Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.01583
Cited By
Learning from Multiple Noisy Augmented Data Sets for Better Cross-Lingual Spoken Language Understanding
3 September 2021
Yingmei Guo
Linjun Shou
J. Pei
Ming Gong
Mingxing Xu
Zhiyong Wu
Daxin Jiang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning from Multiple Noisy Augmented Data Sets for Better Cross-Lingual Spoken Language Understanding"
6 / 6 papers shown
Title
UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding
Dongyang Li
Taolin Zhang
Jiali Deng
Longtao Huang
Chengyu Wang
Xiaofeng He
Hui Xue
34
1
0
24 Jun 2024
Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing
Tom Sherborne
Tom Hosking
Mirella Lapata
OT
24
4
0
09 Jul 2023
PSSAT: A Perturbed Semantic Structure Awareness Transferring Method for Perturbation-Robust Slot Filling
Guanting Dong
Daichi Guo
Liwen Wang
Xuefeng Li
Zechen Wang
...
Hao Lei
Xinyue Cui
Yi Huang
Junlan Feng
Weiran Xu
21
12
0
24 Aug 2022
Call Larisa Ivanovna: Code-Switching Fools Multilingual NLU Models
Alexey Birshert
Ekaterina Artemova
40
2
0
29 Sep 2021
Unsupervised Cross-lingual Adaptation for Sequence Tagging and Beyond
Xin Li
Lidong Bing
Wenxuan Zhang
Zheng Li
Wai Lam
50
25
0
23 Oct 2020
Data Augmentation using Pre-trained Transformer Models
Varun Kumar
Ashutosh Choudhary
Eunah Cho
VLM
216
315
0
04 Mar 2020
1