Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.01401
Cited By
CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models
3 September 2021
Arjun Reddy Akula
Keze Wang
Changsong Liu
Sari Saba-Sadiya
Hongjing Lu
S. Todorovic
J. Chai
Song-Chun Zhu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models"
10 / 60 papers shown
Title
MovieQA: Understanding Stories in Movies through Question-Answering
Makarand Tapaswi
Yukun Zhu
Rainer Stiefelhagen
Antonio Torralba
R. Urtasun
Sanja Fidler
80
736
0
09 Dec 2015
Visualizing and Understanding Recurrent Networks
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
66
1,100
0
05 Jun 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
102
19,448
0
09 Mar 2015
The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification
Been Kim
Cynthia Rudin
J. Shah
34
321
0
03 Mar 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
458
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
124
18,922
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
659
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
848
39,383
0
01 Sep 2014
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
61
12,163
0
19 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
169
15,825
0
12 Nov 2013
Previous
1
2