ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.00757
  4. Cited By
Energy-Efficient Multi-Orchestrator Mobile Edge Learning

Energy-Efficient Multi-Orchestrator Mobile Edge Learning

2 September 2021
Mhd Saria Allahham
Sameh Sorour
Amr M. Mohamed
A. Erbad
Mohsen Guizani
ArXiv (abs)PDFHTML

Papers citing "Energy-Efficient Multi-Orchestrator Mobile Edge Learning"

12 / 12 papers shown
Title
Communicate to Learn at the Edge
Communicate to Learn at the Edge
Deniz Gunduz
David Burth Kurka
Mikolaj Jankowski
M. Amiri
Emre Ozfatura
Sreejith Sreekumar
73
64
0
28 Sep 2020
Jointly Optimizing Dataset Size and Local Updates in Heterogeneous
  Mobile Edge Learning
Jointly Optimizing Dataset Size and Local Updates in Heterogeneous Mobile Edge Learning
Umair Mohammad
Sameh Sorour
M. Hefeida
48
7
0
12 Jun 2020
HFEL: Joint Edge Association and Resource Allocation for Cost-Efficient
  Hierarchical Federated Edge Learning
HFEL: Joint Edge Association and Resource Allocation for Cost-Efficient Hierarchical Federated Edge Learning
Siqi Luo
Xu Chen
Qiong Wu
Zhi Zhou
Shuai Yu
FedML
127
346
0
26 Feb 2020
D2D-Enabled Data Sharing for Distributed Machine Learning at Wireless
  Network Edge
D2D-Enabled Data Sharing for Distributed Machine Learning at Wireless Network Edge
Xiaoran Cai
Xiaopeng Mo
Junyang Chen
Jie Xu
38
26
0
28 Jan 2020
Federated Learning over Wireless Networks: Convergence Analysis and
  Resource Allocation
Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation
Canh T. Dinh
N. H. Tran
Minh N. H. Nguyen
Choong Seon Hong
Wei Bao
Albert Y. Zomaya
Vincent Gramoli
FedML
129
335
0
29 Oct 2019
Client-Edge-Cloud Hierarchical Federated Learning
Client-Edge-Cloud Hierarchical Federated Learning
Lumin Liu
Jun Zhang
S. H. Song
Khaled B. Letaief
FedML
91
752
0
16 May 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
79
1,364
0
07 Mar 2019
Adaptive Task Allocation for Mobile Edge Learning
Adaptive Task Allocation for Mobile Edge Learning
Jin Zhu
Wei Zheng
79
32
0
09 Nov 2018
Towards an Intelligent Edge: Wireless Communication Meets Machine
  Learning
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Guangxu Zhu
Dongzhu Liu
Yuqing Du
Changsheng You
Jun Zhang
Kaibin Huang
71
507
0
02 Sep 2018
Federated Learning with Non-IID Data
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
184
2,587
0
02 Jun 2018
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
263
1,721
0
14 Apr 2018
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
417
17,653
0
17 Feb 2016
1