Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.13097
Cited By
A theory of representation learning gives a deep generalisation of kernel methods
30 August 2021
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A theory of representation learning gives a deep generalisation of kernel methods"
7 / 7 papers shown
Title
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
26
1
0
23 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
61
0
0
02 Oct 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
127
0
0
26 Aug 2024
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
38
29
0
06 Apr 2023
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
A. Gretton
Jennifer Dy
29
3
0
01 Feb 2022
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1