Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.12515
Cited By
Convergence Rates for Learning Linear Operators from Noisy Data
27 August 2021
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence Rates for Learning Linear Operators from Noisy Data"
17 / 17 papers shown
Title
Transfer Learning on Multi-Dimensional Data: A Novel Approach to Neural Network-Based Surrogate Modeling
Adrienne M. Propp
Daniel M. Tartakovsky
AI4CE
26
2
0
16 Oct 2024
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
50
5
0
05 Jan 2024
Inverse Problems with Learned Forward Operators
Simon Arridge
Andreas Hauptmann
Yury Korolev
26
1
0
21 Nov 2023
Nonlocality and Nonlinearity Implies Universality in Operator Learning
S. Lanthaler
Zong-Yi Li
Andrew M. Stuart
16
16
0
26 Apr 2023
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
32
20
0
30 Mar 2023
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
22
24
0
16 Nov 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
18
11
0
28 Sep 2022
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
15
6
0
28 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
30
7
0
15 May 2022
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
21
25
0
27 Apr 2022
On the sample complexity of stabilizing linear dynamical systems from data
Steffen W. R. Werner
Benjamin Peherstorfer
17
7
0
28 Feb 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
30
22
0
14 Dec 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
41
15
0
26 Aug 2021
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
34
29
0
11 Dec 2020
A note on estimation in Hilbertian linear models
Siegfried Hormann
Łukasz Kidziński
66
34
0
14 Aug 2012
Conditional mean embeddings as regressors - supplementary
Steffen Grunewalder
Guy Lever
Luca Baldassarre
Sam Patterson
A. Gretton
Massimiliano Pontil
82
143
0
21 May 2012
1