ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.11898
  4. Cited By
Supervised Compression for Resource-Constrained Edge Computing Systems

Supervised Compression for Resource-Constrained Edge Computing Systems

21 August 2021
Yoshitomo Matsubara
Ruihan Yang
Marco Levorato
Stephan Mandt
ArXivPDFHTML

Papers citing "Supervised Compression for Resource-Constrained Edge Computing Systems"

24 / 24 papers shown
Title
Lossy Neural Compression for Geospatial Analytics: A Review
Carlos Gomes
Isabelle Wittmann
Damien Robert
Johannes Jakubik
Tim Reichelt
...
Romeo Kienzler
Rania Briq
Sabrina Benassou
Michele Lazzarini
C. Albrecht
90
2
0
03 Mar 2025
Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies
Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies
Xubin Wang
Weijia Jia
36
0
0
08 Jan 2025
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Bram Adams
Ahmed E. Hassan
VLM
43
0
0
01 Nov 2024
Bridging Compressed Image Latents and Multimodal Large Language Models
Bridging Compressed Image Latents and Multimodal Large Language Models
Chia-Hao Kao
Cheng Chien
Yu-Jen Tseng
Yi-Hsin Chen
Alessandro Gnutti
Shao-Yuan Lo
Wen-Hsiao Peng
Riccardo Leonardi
42
0
0
29 Jul 2024
Distributed Semantic Segmentation with Efficient Joint Source and Task
  Decoding
Distributed Semantic Segmentation with Efficient Joint Source and Task Decoding
Danish Nazir
Timo Bartels
Jan Piewek
Thorsten Bagdonat
Tim Fingscheidt
35
0
0
15 Jul 2024
On the Impact of Black-box Deployment Strategies for Edge AI on Latency and Model Performance
On the Impact of Black-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Emad Fallahzadeh
Bram Adams
Ahmed E. Hassan
MQ
32
3
0
25 Mar 2024
FOOL: Addressing the Downlink Bottleneck in Satellite Computing with Neural Feature Compression
FOOL: Addressing the Downlink Bottleneck in Satellite Computing with Neural Feature Compression
Alireza Furutanpey
Qiyang Zhang
Philipp Raith
Tobias Pfandzelter
Shangguang Wang
Schahram Dustdar
90
4
0
25 Mar 2024
Resilience of Entropy Model in Distributed Neural Networks
Resilience of Entropy Model in Distributed Neural Networks
Milin Zhang
Mohammad Abdi
Shahriar Rifat
Francesco Restuccia
AAML
27
0
0
01 Mar 2024
Generative Visual Compression: A Review
Generative Visual Compression: A Review
Bo Chen
Shanzhi Yin
Peilin Chen
Shiqi Wang
Yan Ye
32
8
0
03 Feb 2024
Progressive Neural Compression for Adaptive Image Offloading under
  Timing Constraints
Progressive Neural Compression for Adaptive Image Offloading under Timing Constraints
Ruiqi Wang
Hanyang Liu
Jiaming Qiu
Moran Xu
Roch Guérin
Chenyang Lu
11
3
0
08 Oct 2023
Learned Point Cloud Compression for Classification
Learned Point Cloud Compression for Classification
Mateen Ulhaq
Ivan V. Bajić
17
8
0
11 Aug 2023
Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource
  Constrained IoT Systems
Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource Constrained IoT Systems
Juliano S. Assine
José Cândido Silveira Santos Filho
Eduardo Valle
Marco Levorato
19
2
0
22 Jun 2023
FrankenSplit: Efficient Neural Feature Compression with Shallow
  Variational Bottleneck Injection for Mobile Edge Computing
FrankenSplit: Efficient Neural Feature Compression with Shallow Variational Bottleneck Injection for Mobile Edge Computing
Alireza Furutanpey
Philipp Raith
Schahram Dustdar
73
7
0
21 Feb 2023
Improving Statistical Fidelity for Neural Image Compression with
  Implicit Local Likelihood Models
Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models
Matthew Muckley
Alaaeldin El-Nouby
Karen Ullrich
Hervé Jégou
Jakob Verbeek
19
45
0
26 Jan 2023
I-SPLIT: Deep Network Interpretability for Split Computing
I-SPLIT: Deep Network Interpretability for Split Computing
Federico Cunico
Luigi Capogrosso
Francesco Setti
D. Carra
Franco Fummi
Marco Cristani
27
14
0
23 Sep 2022
C3-SL: Circular Convolution-Based Batch-Wise Compression for
  Communication-Efficient Split Learning
C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient Split Learning
Cheng-Yen Hsieh
Yu-Chuan Chuang
An-Yeu
A. Wu
21
7
0
25 Jul 2022
Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
  Communications
Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications
Deniz Gunduz
Zhijin Qin
Iñaki Estella Aguerri
Harpreet S. Dhillon
Zhaohui Yang
Aylin Yener
Kai‐Kit Wong
C. Chae
27
432
0
19 Jul 2022
Fault-Tolerant Collaborative Inference through the Edge-PRUNE Framework
Fault-Tolerant Collaborative Inference through the Edge-PRUNE Framework
Jani Boutellier
Bo Tan
J. Nurmi
16
2
0
16 Jun 2022
Feature Compression for Rate Constrained Object Detection on the Edge
Feature Compression for Rate Constrained Object Detection on the Edge
Zhongzheng Yuan
Samyak Rawlekar
S. Garg
E. Erkip
Yao Wang
10
12
0
15 Apr 2022
SC2 Benchmark: Supervised Compression for Split Computing
SC2 Benchmark: Supervised Compression for Split Computing
Yoshitomo Matsubara
Ruihan Yang
Marco Levorato
Stephan Mandt
14
18
0
16 Mar 2022
An Introduction to Neural Data Compression
An Introduction to Neural Data Compression
Yibo Yang
Stephan Mandt
Lucas Theis
22
115
0
14 Feb 2022
BottleFit: Learning Compressed Representations in Deep Neural Networks
  for Effective and Efficient Split Computing
BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing
Yoshitomo Matsubara
Davide Callegaro
Sameer Singh
Marco Levorato
Francesco Restuccia
19
41
0
07 Jan 2022
Split Computing and Early Exiting for Deep Learning Applications: Survey
  and Research Challenges
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Yoshitomo Matsubara
Marco Levorato
Francesco Restuccia
22
199
0
08 Mar 2021
End-to-end Learning of Compressible Features
End-to-end Learning of Compressible Features
Saurabh Singh
Sami Abu-El-Haija
Nick Johnston
Johannes Ballé
Abhinav Shrivastava
G. Toderici
SSL
94
71
0
23 Jul 2020
1