ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10573
  4. Cited By
The staircase property: How hierarchical structure can guide deep
  learning

The staircase property: How hierarchical structure can guide deep learning

24 August 2021
Emmanuel Abbe
Enric Boix-Adserà
Matthew Brennan
Guy Bresler
Dheeraj M. Nagaraj
ArXivPDFHTML

Papers citing "The staircase property: How hierarchical structure can guide deep learning"

13 / 13 papers shown
Title
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
61
1
0
10 Jan 2025
How Feature Learning Can Improve Neural Scaling Laws
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
59
12
0
26 Sep 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
94
2
0
08 Jul 2024
Hamiltonian Mechanics of Feature Learning: Bottleneck Structure in Leaky ResNets
Hamiltonian Mechanics of Feature Learning: Bottleneck Structure in Leaky ResNets
Arthur Jacot
Alexandre Kaiser
38
0
0
27 May 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
70
12
0
24 May 2024
Interpreting Training Aspects of Deep-Learned Error-Correcting Codes
Interpreting Training Aspects of Deep-Learned Error-Correcting Codes
Natasha Devroye
A. Mulgund
R. Shekhar
Gyorgy Turán
M. vZefran
Y. Zhou
34
3
0
07 May 2023
A Mathematical Model for Curriculum Learning for Parities
A Mathematical Model for Curriculum Learning for Parities
Elisabetta Cornacchia
Elchanan Mossel
47
10
0
31 Jan 2023
Generalization on the Unseen, Logic Reasoning and Degree Curriculum
Generalization on the Unseen, Logic Reasoning and Degree Curriculum
Emmanuel Abbe
Samy Bengio
Aryo Lotfi
Kevin Rizk
LRM
43
49
0
30 Jan 2023
Global and Local Hierarchy-aware Contrastive Framework for Implicit
  Discourse Relation Recognition
Global and Local Hierarchy-aware Contrastive Framework for Implicit Discourse Relation Recognition
Yuxin Jiang
Linhan Zhang
Wei Wang
38
17
0
25 Nov 2022
Spectral Regularization Allows Data-frugal Learning over Combinatorial
  Spaces
Spectral Regularization Allows Data-frugal Learning over Combinatorial Spaces
Amirali Aghazadeh
Nived Rajaraman
Tony Tu
Kannan Ramchandran
22
2
0
05 Oct 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step
  Improves the Representation
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
42
121
0
03 May 2022
On the Power of Differentiable Learning versus PAC and SQ Learning
On the Power of Differentiable Learning versus PAC and SQ Learning
Emmanuel Abbe
Pritish Kamath
Eran Malach
Colin Sandon
Nathan Srebro
MLT
77
23
0
09 Aug 2021
Benefits of depth in neural networks
Benefits of depth in neural networks
Matus Telgarsky
153
603
0
14 Feb 2016
1