ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10434
  4. Cited By
Adaptive shot allocation for fast convergence in variational quantum
  algorithms

Adaptive shot allocation for fast convergence in variational quantum algorithms

23 August 2021
Andi Gu
Angus Lowe
Pavel A. Dub
Patrick J. Coles
A. Arrasmith
ArXivPDFHTML

Papers citing "Adaptive shot allocation for fast convergence in variational quantum algorithms"

12 / 12 papers shown
Title
An Adaptive Re-evaluation Method for Evolution Strategy under Additive Noise
An Adaptive Re-evaluation Method for Evolution Strategy under Additive Noise
Catalin-Viorel Dinu
Yash J. Patel
X. Bonet-Monroig
Hao Wang
25
0
0
25 Sep 2024
Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
  Quantum Systems
Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational Quantum Systems
Lucas Tecot
Cho-Jui Hsieh
21
0
0
14 Oct 2023
Shot Optimization in Quantum Machine Learning Architectures to
  Accelerate Training
Shot Optimization in Quantum Machine Learning Architectures to Accelerate Training
Koustubh Phalak
Swaroop Ghosh
39
5
0
21 Apr 2023
Challenges and Opportunities in Quantum Machine Learning
Challenges and Opportunities in Quantum Machine Learning
M. Cerezo
Guillaume Verdon
Hsin-Yuan Huang
L. Cincio
Patrick J. Coles
VLM
19
404
0
16 Mar 2023
Shot-frugal and Robust quantum kernel classifiers
Shot-frugal and Robust quantum kernel classifiers
Abhay Shastry
Abhijith Jayakumar
Apoorva D. Patel
Chiranjib Bhattacharyya
24
1
0
13 Oct 2022
Stochastic noise can be helpful for variational quantum algorithms
Stochastic noise can be helpful for variational quantum algorithms
Junyu Liu
Frederik Wilde
A. A. Mele
Liang Jiang
Jens Eisert
Jens Eisert
24
34
0
13 Oct 2022
Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
  and measurement reduction
Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement and measurement reduction
Yan Qian
Yuxuan Du
Dacheng Tao
36
3
0
26 Sep 2022
Can Error Mitigation Improve Trainability of Noisy Variational Quantum
  Algorithms?
Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?
Samson Wang
Piotr Czarnik
A. Arrasmith
M. Cerezo
L. Cincio
Patrick J. Coles
68
81
0
02 Sep 2021
Noisy intermediate-scale quantum (NISQ) algorithms
Noisy intermediate-scale quantum (NISQ) algorithms
Kishor Bharti
Alba Cervera-Lierta
T. Kyaw
Tobias Haug
Sumner Alperin-Lea
...
Tim Menke
Wai-Keong Mok
Sukin Sim
L. Kwek
Alán Aspuru-Guzik
106
390
0
21 Jan 2021
Connecting ansatz expressibility to gradient magnitudes and barren
  plateaus
Connecting ansatz expressibility to gradient magnitudes and barren plateaus
Zoë Holmes
Kunal Sharma
M. Cerezo
Patrick J. Coles
143
423
0
06 Jan 2021
Noise-Induced Barren Plateaus in Variational Quantum Algorithms
Noise-Induced Barren Plateaus in Variational Quantum Algorithms
Samson Wang
Enrico Fontana
M. Cerezo
Kunal Sharma
A. Sone
L. Cincio
Patrick J. Coles
138
655
0
28 Jul 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
1