Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.10241
Cited By
Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks on Production Federated Learning
23 August 2021
Virat Shejwalkar
Amir Houmansadr
Peter Kairouz
Daniel Ramage
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks on Production Federated Learning"
41 / 41 papers shown
Title
Toward Malicious Clients Detection in Federated Learning
Zhihao Dou
Jiaqi Wang
Wei Sun
Zhuqing Liu
Minghong Fang
AAML
29
0
0
14 May 2025
Bayesian Robust Aggregation for Federated Learning
Aleksandr Karakulev
Usama Zafar
Salman Toor
Prashant Singh
FedML
38
0
0
05 May 2025
A Client-level Assessment of Collaborative Backdoor Poisoning in Non-IID Federated Learning
Phung Lai
Guanxiong Liu
Hai Phan
Issa M. Khalil
Abdallah Khreishah
Xintao Wu
FedML
36
0
0
17 Apr 2025
FedSV: Byzantine-Robust Federated Learning via Shapley Value
Khaoula Otmani
Rachid Elazouzi
Vincent Labatut
FedML
AAML
90
2
0
24 Feb 2025
Decoding FL Defenses: Systemization, Pitfalls, and Remedies
M. A. Khan
Virat Shejwalkar
Yasra Chandio
Amir Houmansadr
Fatima M. Anwar
AAML
38
0
0
03 Feb 2025
Do We Really Need to Design New Byzantine-robust Aggregation Rules?
Minghong Fang
Seyedsina Nabavirazavi
Zhuqing Liu
Wei Sun
S. Iyengar
Haibo Yang
AAML
OOD
84
6
0
29 Jan 2025
Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense
Rui Min
Zeyu Qin
Nevin L. Zhang
Li Shen
Minhao Cheng
AAML
39
4
0
13 Oct 2024
Advancing Hybrid Defense for Byzantine Attacks in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
AAML
39
0
0
10 Sep 2024
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
44
0
0
09 Aug 2024
DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking
A. Abuadbba
Nicholas Rhodes
Kristen Moore
Bushra Sabir
Shuo Wang
Yansong Gao
AAML
35
2
0
01 Jul 2024
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
41
1
0
01 Jun 2024
Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning
Naveen Kumar
Krishna Mohan
Aravind Machiry
AAML
36
1
0
05 Apr 2024
FLGuard: Byzantine-Robust Federated Learning via Ensemble of Contrastive Models
Younghan Lee
Yungi Cho
Woorim Han
Ho Bae
Y. Paek
FedML
AAML
27
2
0
05 Mar 2024
Data-Agnostic Model Poisoning against Federated Learning: A Graph Autoencoder Approach
Kai Li
Jingjing Zheng
Xinnan Yuan
W. Ni
Ozgur B. Akan
H. Vincent Poor
AAML
27
15
0
30 Nov 2023
Voyager: MTD-Based Aggregation Protocol for Mitigating Poisoning Attacks on DFL
Chao Feng
Alberto Huertas Celdrán
Michael Vuong
Gérome Bovet
Burkhard Stiller
AAML
24
1
0
12 Oct 2023
A Survey for Federated Learning Evaluations: Goals and Measures
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
ELM
FedML
17
21
0
23 Aug 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
38
13
0
27 Jul 2023
FedDefender: Client-Side Attack-Tolerant Federated Learning
Sungwon Park
Sungwon Han
Fangzhao Wu
Sundong Kim
Bin Zhu
Xing Xie
Meeyoung Cha
FedML
AAML
25
20
0
18 Jul 2023
Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses
M. Ferrag
Othmane Friha
B. Kantarci
Norbert Tihanyi
Lucas C. Cordeiro
Merouane Debbah
Djallel Hamouda
Muna Al-Hawawreh
K. Choo
25
43
0
17 Jun 2023
Incentivizing Honesty among Competitors in Collaborative Learning and Optimization
Florian E. Dorner
Nikola Konstantinov
Georgi Pashaliev
Martin Vechev
FedML
22
5
0
25 May 2023
Can Decentralized Learning be more robust than Federated Learning?
Mathilde Raynal
Dario Pasquini
Carmela Troncoso
OOD
FedML
38
4
0
07 Mar 2023
FLINT: A Platform for Federated Learning Integration
Ewen N. Wang
Ajaykumar Kannan
Yuefeng Liang
Boyi Chen
Mosharaf Chowdhury
40
24
0
24 Feb 2023
Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks
Zeyu Qin
Liuyi Yao
Daoyuan Chen
Yaliang Li
Bolin Ding
Minhao Cheng
FedML
38
25
0
03 Feb 2023
Security Analysis of SplitFed Learning
M. A. Khan
Virat Shejwalkar
Amir Houmansadr
Fatima M. Anwar
FedML
24
11
0
04 Dec 2022
FedCut: A Spectral Analysis Framework for Reliable Detection of Byzantine Colluders
Hanlin Gu
Lixin Fan
Xingxing Tang
Qiang Yang
AAML
FedML
22
1
0
24 Nov 2022
Rickrolling the Artist: Injecting Backdoors into Text Encoders for Text-to-Image Synthesis
Lukas Struppek
Dominik Hintersdorf
Kristian Kersting
SILM
22
36
0
04 Nov 2022
The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning
Virat Shejwalkar
Lingjuan Lyu
Amir Houmansadr
AAML
27
10
0
01 Nov 2022
FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning
Kaiyuan Zhang
Guanhong Tao
Qiuling Xu
Shuyang Cheng
Shengwei An
...
Shiwei Feng
Guangyu Shen
Pin-Yu Chen
Shiqing Ma
Xiangyu Zhang
FedML
42
51
0
23 Oct 2022
Thinking Two Moves Ahead: Anticipating Other Users Improves Backdoor Attacks in Federated Learning
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Hossein Souri
Ramalingam Chellappa
Micah Goldblum
Tom Goldstein
AAML
SILM
FedML
30
9
0
17 Oct 2022
Byzantines can also Learn from History: Fall of Centered Clipping in Federated Learning
Kerem Ozfatura
Emre Ozfatura
Alptekin Kupcu
Deniz Gunduz
AAML
FedML
36
13
0
21 Aug 2022
PASS: A Parameter Audit-based Secure and Fair Federated Learning Scheme against Free-Rider Attack
Jianhua Wang
Xiaolin Chang
J. Misic
Vojislav B. Mišić
Yixiang Wang
24
7
0
15 Jul 2022
FLVoogd: Robust And Privacy Preserving Federated Learning
Yuhang Tian
Rui Wang
Yan Qiao
E. Panaousis
K. Liang
FedML
28
4
0
24 Jun 2022
zPROBE: Zero Peek Robustness Checks for Federated Learning
Zahra Ghodsi
Mojan Javaheripi
Nojan Sheybani
Xinqiao Zhang
Ke Huang
F. Koushanfar
FedML
47
17
0
24 Jun 2022
Neurotoxin: Durable Backdoors in Federated Learning
Zhengming Zhang
Ashwinee Panda
Linyue Song
Yaoqing Yang
Michael W. Mahoney
Joseph E. Gonzalez
Kannan Ramchandran
Prateek Mittal
FedML
38
130
0
12 Jun 2022
Indiscriminate Data Poisoning Attacks on Neural Networks
Yiwei Lu
Gautam Kamath
Yaoliang Yu
AAML
43
24
0
19 Apr 2022
MPAF: Model Poisoning Attacks to Federated Learning based on Fake Clients
Xiaoyu Cao
Neil Zhenqiang Gong
20
108
0
16 Mar 2022
More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks
Jing Xu
Rui Wang
Stefanos Koffas
K. Liang
S. Picek
FedML
AAML
39
25
0
07 Feb 2022
Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications
Matthias Paulik
M. Seigel
Henry Mason
Dominic Telaar
Joris Kluivers
...
Dominic Hughes
O. Javidbakht
Fei Dong
Rehan Rishi
Stanley Hung
FedML
183
126
0
16 Feb 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
IBM Federated Learning: an Enterprise Framework White Paper V0.1
Heiko Ludwig
Nathalie Baracaldo
Gegi Thomas
Yi Zhou
Ali Anwar
...
Sean Laguna
Mikhail Yurochkin
Mayank Agarwal
Ebube Chuba
Annie Abay
FedML
131
157
0
22 Jul 2020
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
191
1,032
0
29 Nov 2018
1