ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10241
34
213

Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks on Production Federated Learning

23 August 2021
Virat Shejwalkar
Amir Houmansadr
Peter Kairouz
Daniel Ramage
    AAML
ArXivPDFHTML
Abstract

While recent works have indicated that federated learning (FL) may be vulnerable to poisoning attacks by compromised clients, their real impact on production FL systems is not fully understood. In this work, we aim to develop a comprehensive systemization for poisoning attacks on FL by enumerating all possible threat models, variations of poisoning, and adversary capabilities. We specifically put our focus on untargeted poisoning attacks, as we argue that they are significantly relevant to production FL deployments. We present a critical analysis of untargeted poisoning attacks under practical, production FL environments by carefully characterizing the set of realistic threat models and adversarial capabilities. Our findings are rather surprising: contrary to the established belief, we show that FL is highly robust in practice even when using simple, low-cost defenses. We go even further and propose novel, state-of-the-art data and model poisoning attacks, and show via an extensive set of experiments across three benchmark datasets how (in)effective poisoning attacks are in the presence of simple defense mechanisms. We aim to correct previous misconceptions and offer concrete guidelines to conduct more accurate (and more realistic) research on this topic.

View on arXiv
Comments on this paper