ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10130
  4. Cited By
No DBA? No regret! Multi-armed bandits for index tuning of analytical
  and HTAP workloads with provable guarantees

No DBA? No regret! Multi-armed bandits for index tuning of analytical and HTAP workloads with provable guarantees

23 August 2021
R. Perera
Bastian Oetomo
Benjamin I. P. Rubinstein
Renata Borovica-Gajic
ArXivPDFHTML

Papers citing "No DBA? No regret! Multi-armed bandits for index tuning of analytical and HTAP workloads with provable guarantees"

4 / 4 papers shown
Title
Can Uncertainty Quantification Enable Better Learning-based Index
  Tuning?
Can Uncertainty Quantification Enable Better Learning-based Index Tuning?
Tao Yu
Zhaonian Zou
Hao Xiong
16
1
0
23 Oct 2024
ML-Powered Index Tuning: An Overview of Recent Progress and Open
  Challenges
ML-Powered Index Tuning: An Overview of Recent Progress and Open Challenges
Tarique Siddiqui
Wentao Wu
11
6
0
25 Aug 2023
Baihe: SysML Framework for AI-driven Databases
Baihe: SysML Framework for AI-driven Databases
A. Pfadler
Rong Zhu
Wei Chen
Botong Huang
Tian Zeng
Bolin Ding
Jingren Zhou
12
3
0
29 Dec 2021
A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation,
  Cost Model, and Plan Enumeration
A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration
Hai Lan
Z. Bao
Yuwei Peng
25
81
0
05 Jan 2021
1