ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.09076
  4. Cited By
PASTO: Strategic Parameter Optimization in Recommendation Systems --
  Probabilistic is Better than Deterministic

PASTO: Strategic Parameter Optimization in Recommendation Systems -- Probabilistic is Better than Deterministic

20 August 2021
Weicong Ding
Hanlin Tang
Jingshuo Feng
Lei Yuan
Sen Yang
Guangxu Yang
Jie Zheng
Jing Wang
Qiang Su
Dong Zheng
Xue-Bo Qiu
Yongqiang Liu
Yuxuan Chen
Yang Liu
Chao Song
Dongying Kong
Kai Ren
Peng Jiang
Qiao Lian
Ji Liu
ArXivPDFHTML

Papers citing "PASTO: Strategic Parameter Optimization in Recommendation Systems -- Probabilistic is Better than Deterministic"

2 / 2 papers shown
Title
Max-value Entropy Search for Multi-Objective Bayesian Optimization with
  Constraints
Max-value Entropy Search for Multi-Objective Bayesian Optimization with Constraints
Syrine Belakaria
Aryan Deshwal
J. Doppa
52
131
0
01 Sep 2020
Multi-Gradient Descent for Multi-Objective Recommender Systems
Multi-Gradient Descent for Multi-Objective Recommender Systems
Nikola Milojković
Diego Antognini
Giancarlo Bergamin
Boi Faltings
C. Musat
42
46
0
09 Dec 2019
1