ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.08842
  4. Cited By
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for
  Federated Learning

EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning

19 August 2021
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
    FedML
ArXivPDFHTML

Papers citing "EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning"

30 / 30 papers shown
Title
FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching
FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching
Qifan Yan
Andrew Liu
Shiqi He
Mathias Lécuyer
Ivan Beschastnikh
FedML
36
0
0
21 Apr 2025
PREAMBLE: Private and Efficient Aggregation of Block Sparse Vectors and Applications
PREAMBLE: Private and Efficient Aggregation of Block Sparse Vectors and Applications
Hilal Asi
Vitaly Feldman
Hannah Keller
G. Rothblum
Kunal Talwar
FedML
59
1
0
14 Mar 2025
Pushing the Limits of Large Language Model Quantization via the
  Linearity Theorem
Pushing the Limits of Large Language Model Quantization via the Linearity Theorem
Vladimir Malinovskii
Andrei Panferov
Ivan Ilin
Han Guo
Peter Richtárik
Dan Alistarh
MQ
78
7
0
26 Nov 2024
Noise-Robust and Resource-Efficient ADMM-based Federated Learning
Noise-Robust and Resource-Efficient ADMM-based Federated Learning
Ehsan Lari
Reza Arablouei
Vinay Chakravarthi Gogineni
Stefan Werner
FedML
26
1
0
20 Sep 2024
Masked Random Noise for Communication Efficient Federaetd Learning
Masked Random Noise for Communication Efficient Federaetd Learning
Shiwei Li
Yingyi Cheng
Haozhao Wang
Xing Tang
Shijie Xu
Weihong Luo
Yuhua Li
Dugang Liu
Xiuqiang He
and Ruixuan Li
FedML
50
1
0
06 Aug 2024
Beyond Throughput and Compression Ratios: Towards High End-to-end
  Utility of Gradient Compression
Beyond Throughput and Compression Ratios: Towards High End-to-end Utility of Gradient Compression
Wenchen Han
S. Vargaftik
Michael Mitzenmacher
Brad Karp
Ran Ben-Basat
40
2
0
01 Jul 2024
EncCluster: Scalable Functional Encryption in Federated Learning through
  Weight Clustering and Probabilistic Filters
EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters
Vasileios Tsouvalas
Samaneh Mohammadi
Ali Balador
T. Ozcelebi
Francesco Flammini
N. Meratnia
FedML
36
0
0
13 Jun 2024
Blockchain-empowered Federated Learning: Benefits, Challenges, and
  Solutions
Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions
Zeju Cai
Jianguo Chen
Yuting Fan
Zibin Zheng
Keqin Li
41
4
0
01 Mar 2024
Optimal and Near-Optimal Adaptive Vector Quantization
Optimal and Near-Optimal Adaptive Vector Quantization
Ran Ben-Basat
Y. Ben-Itzhak
Michael Mitzenmacher
S. Vargaftik
MQ
24
3
0
05 Feb 2024
Federated Fine-Tuning of Foundation Models via Probabilistic Masking
Federated Fine-Tuning of Foundation Models via Probabilistic Masking
Vasileios Tsouvalas
Yuki M. Asano
Aaqib Saeed
FedML
79
3
0
29 Nov 2023
FedCode: Communication-Efficient Federated Learning via Transferring
  Codebooks
FedCode: Communication-Efficient Federated Learning via Transferring Codebooks
Saeed Khalilian Gourtani
Vasileios Tsouvalas
T. Ozcelebi
N. Meratnia
FedML
30
5
0
15 Nov 2023
Correlation Aware Sparsified Mean Estimation Using Random Projection
Correlation Aware Sparsified Mean Estimation Using Random Projection
Shuli Jiang
Pranay Sharma
Gauri Joshi
35
1
0
29 Oct 2023
LASER: Linear Compression in Wireless Distributed Optimization
LASER: Linear Compression in Wireless Distributed Optimization
Ashok Vardhan Makkuva
Marco Bondaschi
Thijs Vogels
Martin Jaggi
Hyeji Kim
Michael C. Gastpar
82
3
0
19 Oct 2023
Matrix Compression via Randomized Low Rank and Low Precision
  Factorization
Matrix Compression via Randomized Low Rank and Low Precision Factorization
R. Saha
Varun Srivastava
Mert Pilanci
23
19
0
17 Oct 2023
Heterogeneous Federated Learning: State-of-the-art and Research
  Challenges
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
Adaptive Compression in Federated Learning via Side Information
Adaptive Compression in Federated Learning via Side Information
Berivan Isik
Francesco Pase
Deniz Gunduz
Sanmi Koyejo
Tsachy Weissman
M. Zorzi
FedML
31
9
0
22 Jun 2023
Exact Optimality of Communication-Privacy-Utility Tradeoffs in
  Distributed Mean Estimation
Exact Optimality of Communication-Privacy-Utility Tradeoffs in Distributed Mean Estimation
Berivan Isik
Wei-Ning Chen
Ayfer Özgür
Tsachy Weissman
Albert No
55
19
0
08 Jun 2023
Fast Optimal Locally Private Mean Estimation via Random Projections
Fast Optimal Locally Private Mean Estimation via Random Projections
Hilal Asi
Vitaly Feldman
Jelani Nelson
Huy Le Nguyen
Kunal Talwar
FedML
34
13
0
07 Jun 2023
Communication-Efficient Design for Quantized Decentralized Federated
  Learning
Communication-Efficient Design for Quantized Decentralized Federated Learning
L. Chen
Wei Liu
Yunfei Chen
Weidong Wang
FedML
MQ
52
14
0
15 Mar 2023
THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic
  Compression
THC: Accelerating Distributed Deep Learning Using Tensor Homomorphic Compression
Minghao Li
Ran Ben-Basat
S. Vargaftik
Chon-In Lao
Ke Xu
Michael Mitzenmacher
Minlan Yu Harvard University
26
15
0
16 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
26
18
0
01 Feb 2023
GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth
  Efficient Federated Learning
GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning
Shiqi He
Qifan Yan
Feijie Wu
Lanjun Wang
Mathias Lécuyer
Ivan Beschastnikh
FedML
42
7
0
03 Dec 2022
ScionFL: Efficient and Robust Secure Quantized Aggregation
ScionFL: Efficient and Robust Secure Quantized Aggregation
Y. Ben-Itzhak
Helen Mollering
Benny Pinkas
T. Schneider
Ajith Suresh
Oleksandr Tkachenko
S. Vargaftik
Christian Weinert
Hossein Yalame
Avishay Yanai
32
6
0
13 Oct 2022
Sparse Random Networks for Communication-Efficient Federated Learning
Sparse Random Networks for Communication-Efficient Federated Learning
Berivan Isik
Francesco Pase
Deniz Gunduz
Tsachy Weissman
M. Zorzi
FedML
70
52
0
30 Sep 2022
Towards Efficient Communications in Federated Learning: A Contemporary
  Survey
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
51
59
0
02 Aug 2022
QUIC-FL: Quick Unbiased Compression for Federated Learning
QUIC-FL: Quick Unbiased Compression for Federated Learning
Ran Ben-Basat
S. Vargaftik
Amit Portnoy
Gil Einziger
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
64
13
0
26 May 2022
SDR: Efficient Neural Re-ranking using Succinct Document Representation
SDR: Efficient Neural Re-ranking using Succinct Document Representation
Nachshon Cohen
Amit Portnoy
B. Fetahu
A. Ingber
AI4TS
26
10
0
03 Oct 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
DRIVE: One-bit Distributed Mean Estimation
DRIVE: One-bit Distributed Mean Estimation
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
OOD
FedML
82
51
0
18 May 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,821
0
17 Sep 2019
1