Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.06629
Cited By
LayerPipe: Accelerating Deep Neural Network Training by Intra-Layer and Inter-Layer Gradient Pipelining and Multiprocessor Scheduling
14 August 2021
Nanda K. Unnikrishnan
Keshab K. Parhi
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LayerPipe: Accelerating Deep Neural Network Training by Intra-Layer and Inter-Layer Gradient Pipelining and Multiprocessor Scheduling"
3 / 3 papers shown
Title
Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks
Minsoo Rhu
Mike O'Connor
Niladrish Chatterjee
Jeff Pool
S. Keckler
42
176
0
03 May 2017
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Vivienne Sze
Yu-hsin Chen
Tien-Ju Yang
J. Emer
AAML
3DV
94
3,002
0
27 Mar 2017
Decoupled Neural Interfaces using Synthetic Gradients
Max Jaderberg
Wojciech M. Czarnecki
Simon Osindero
Oriol Vinyals
Alex Graves
David Silver
Koray Kavukcuoglu
65
356
0
18 Aug 2016
1