Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.06280
Cited By
Understanding Structural Vulnerability in Graph Convolutional Networks
13 August 2021
Liang Chen
Jintang Li
Qibiao Peng
Yang Liu
Zibin Zheng
Carl Yang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Structural Vulnerability in Graph Convolutional Networks"
32 / 32 papers shown
Title
AuditVotes: A Framework Towards More Deployable Certified Robustness for Graph Neural Networks
Y. Lai
Yulin Zhu
Y. Sun
Y. Wu
Bin Xiao
Gaolei Li
Jianhua Li
Kai Zhou
AAML
41
0
0
29 Mar 2025
Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification
Jiayi Luo
Qingyun Sun
Haonan Yuan
Xingcheng Fu
Jianxin Li
DiffM
AAML
79
0
0
07 Feb 2025
Explainable AI Security: Exploring Robustness of Graph Neural Networks to Adversarial Attacks
Tao Wu
Canyixing Cui
Xingping Xian
Shaojie Qiao
Chao Wang
Lin Yuan
Shui Yu
AAML
39
0
0
20 Jun 2024
Revisiting Edge Perturbation for Graph Neural Network in Graph Data Augmentation and Attack
Xin Liu
Yuxiang Zhang
Meng Wu
Mingyu Yan
Kun He
Wei Yan
Shirui Pan
Xiaochun Ye
Dongrui Fan
AAML
25
2
0
10 Mar 2024
Minimum Topology Attacks for Graph Neural Networks
Mengmei Zhang
Xiao Wang
Chuan Shi
Lingjuan Lyu
Tianchi Yang
Junping Du
AAML
36
7
0
05 Mar 2024
Spatial-Temporal DAG Convolutional Networks for End-to-End Joint Effective Connectivity Learning and Resting-State fMRI Classification
Rui Yang
Wenrui Dai
H. She
Yiping P. Du
Dapeng Wu
Hongkai Xiong
20
2
0
16 Dec 2023
Simple and Efficient Partial Graph Adversarial Attack: A New Perspective
Guanghui Zhu
Meng Chen
C. Yuan
Y. Huang
AAML
18
6
0
15 Aug 2023
A Unified Framework of Graph Information Bottleneck for Robustness and Membership Privacy
Enyan Dai
Limeng Cui
Zhengyang Wang
Xianfeng Tang
Yinghan Wang
Mo Cheng
Bin Yin
Suhang Wang
AAML
25
14
0
14 Jun 2023
Less Can Be More: Unsupervised Graph Pruning for Large-scale Dynamic Graphs
Jintang Li
Sheng Tian
Ruofan Wu
Liang Zhu
Welong Zhao
Changhua Meng
Liang Chen
Zibin Zheng
Hongzhi Yin
31
10
0
18 May 2023
AGNN: Alternating Graph-Regularized Neural Networks to Alleviate Over-Smoothing
Zhaoliang Chen
Zhihao Wu
Zhe-Hui Lin
Shiping Wang
Claudia Plant
Wenzhong Guo
27
18
0
14 Apr 2023
Attributed Multi-order Graph Convolutional Network for Heterogeneous Graphs
Zhaoliang Chen
Zhihao Wu
Luying Zhong
Claudia Plant
Shiping Wang
Wenzhong Guo
20
9
0
13 Apr 2023
Are Defenses for Graph Neural Networks Robust?
Felix Mujkanovic
Simon Geisler
Stephan Günnemann
Aleksandar Bojchevski
OOD
AAML
19
56
0
31 Jan 2023
Robust Graph Representation Learning via Predictive Coding
Billy Byiringiro
Tommaso Salvatori
Thomas Lukasiewicz
OOD
25
6
0
09 Dec 2022
Semantic Graph Neural Network with Multi-measure Learning for Semi-supervised Classification
Jun-Liang Lin
Yuan Wan
Jingwen Xu
X. Qi
25
0
0
04 Dec 2022
Spectral Adversarial Training for Robust Graph Neural Network
Jintang Li
Jiaying Peng
Liang Chen
Zibin Zheng
Tingting Liang
Qing Ling
AAML
OOD
28
17
0
20 Nov 2022
FocusedCleaner: Sanitizing Poisoned Graphs for Robust GNN-based Node Classification
Yulin Zhu
Liang Tong
Gaolei Li
Xiapu Luo
Kai Zhou
30
4
0
25 Oct 2022
GANI: Global Attacks on Graph Neural Networks via Imperceptible Node Injections
Junyuan Fang
Haixian Wen
Jiajing Wu
Qi Xuan
Zibin Zheng
Chi K. Tse
AAML
36
22
0
23 Oct 2022
Robust Node Classification on Graphs: Jointly from Bayesian Label Transition and Topology-based Label Propagation
Jun Zhuang
M. Hasan
23
20
0
21 Aug 2022
Scaling Up Dynamic Graph Representation Learning via Spiking Neural Networks
Jintang Li
Zhouxin Yu
Zulun Zhu
Liang Chen
Qi Yu
Zibin Zheng
Sheng Tian
Ruofan Wu
Changhua Meng
GNN
18
30
0
15 Aug 2022
Reliable Representations Make A Stronger Defender: Unsupervised Structure Refinement for Robust GNN
Kuan Li
Yang Liu
Xiang Ao
Jianfeng Chi
Jinghua Feng
Hao Yang
Qing He
AAML
41
63
0
30 Jun 2022
What's Behind the Mask: Understanding Masked Graph Modeling for Graph Autoencoders
Jintang Li
Ruofan Wu
Wangbin Sun
Liang Chen
Sheng Tian
Liang Zhu
Changhua Meng
Zibin Zheng
Weiqiang Wang
SSL
24
79
0
20 May 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
27
25
0
20 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Detecting Topology Attacks against Graph Neural Networks
Senrong Xu
Yuan Yao
Liangyue Li
Wei Yang
F. Xu
Hanghang Tong
34
3
0
21 Apr 2022
GUARD: Graph Universal Adversarial Defense
Jintang Li
Jie Liao
Ruofan Wu
Liang Chen
Zibin Zheng
Jiawang Dan
Changhua Meng
Weiqiang Wang
AAML
14
8
0
20 Apr 2022
A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability
Enyan Dai
Tianxiang Zhao
Huaisheng Zhu
Jun Xu
Zhimeng Guo
Hui Liu
Jiliang Tang
Suhang Wang
29
131
0
18 Apr 2022
Defending Graph Convolutional Networks against Dynamic Graph Perturbations via Bayesian Self-supervision
Jun Zhuang
M. Hasan
AAML
21
42
0
07 Mar 2022
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
Jintang Li
Bingzhe Wu
Chengbin Hou
Guoji Fu
Yatao Bian
Liang Chen
Junzhou Huang
Zibin Zheng
OOD
AAML
24
6
0
15 Feb 2022
Robustness of Graph Neural Networks at Scale
Simon Geisler
Tobias Schmidt
Hakan cSirin
Daniel Zügner
Aleksandar Bojchevski
Stephan Günnemann
AAML
22
123
0
26 Oct 2021
Subgraph Federated Learning with Missing Neighbor Generation
Ke Zhang
Carl Yang
Xiaoxiao Li
Lichao Sun
S. Yiu
FedML
19
163
0
25 Jun 2021
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks
Chaoyang He
Keshav Balasubramanian
Emir Ceyani
Carl Yang
Han Xie
...
Yu Rong
P. Zhao
Junzhou Huang
M. Annavaram
Salman Avestimehr
FedML
OOD
21
2
0
14 Apr 2021
Adversarial Attack and Defense on Graph Data: A Survey
Lichao Sun
Yingtong Dou
Carl Yang
Ji Wang
Yixin Liu
Philip S. Yu
Lifang He
B. Li
GNN
AAML
16
273
0
26 Dec 2018
1