Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.06098
Cited By
FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning
13 August 2021
Nam Hyeon-Woo
Moon Ye-Bin
Tae-Hyun Oh
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning"
19 / 19 papers shown
Title
HSplitLoRA: A Heterogeneous Split Parameter-Efficient Fine-Tuning Framework for Large Language Models
Zheng Lin
Yuxin Zhang
Zhe Chen
Zihan Fang
Xianhao Chen
Praneeth Vepakomma
Wei Ni
Jun Luo
Yue Gao
MoE
46
2
0
05 May 2025
Hadamard product in deep learning: Introduction, Advances and Challenges
Grigorios G. Chrysos
Yongtao Wu
Razvan Pascanu
Philip Torr
V. Cevher
AAML
98
0
0
17 Apr 2025
LoCA: Location-Aware Cosine Adaptation for Parameter-Efficient Fine-Tuning
Zhekai Du
Yinjie Min
Jingjing Li
Ke Lu
Changliang Zou
Liuhua Peng
Tingjin Chu
Mingming Gong
186
1
0
05 Feb 2025
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Ruijia Niu
D. Wu
Rose Yu
Yi Ma
33
1
0
09 Oct 2024
Customizing Language Models with Instance-wise LoRA for Sequential Recommendation
Xiaoyu Kong
Jiancan Wu
An Zhang
Leheng Sheng
Hui Lin
Xiang Wang
Xiangnan He
AI4TS
58
7
0
19 Aug 2024
LoRA-Pro: Are Low-Rank Adapters Properly Optimized?
Zhengbo Wang
Jian Liang
Ran He
Zilei Wang
Tieniu Tan
58
16
0
25 Jul 2024
Pareto Low-Rank Adapters: Efficient Multi-Task Learning with Preferences
Nikolaos Dimitriadis
Pascal Frossard
F. Fleuret
MoE
67
6
0
10 Jul 2024
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
Jie Xu
Karthikeyan P. Saravanan
Rogier van Dalen
Haaris Mehmood
David Tuckey
Mete Ozay
56
6
0
10 May 2024
Institutional Platform for Secure Self-Service Large Language Model Exploration
V. Bumgardner
Mitchell A. Klusty
W. V. Logan
Samuel E. Armstrong
Caylin D. Hickey
Jeff Talbert
Caylin Hickey
Jeff Talbert
58
1
0
01 Feb 2024
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
FedBug: A Bottom-Up Gradual Unfreezing Framework for Federated Learning
Chia-Hsiang Kao
Yu-Chiang Frank Wang
FedML
26
1
0
19 Jul 2023
An Efficient Virtual Data Generation Method for Reducing Communication in Federated Learning
Cheng Yang
Xue Yang
Dongxian Wu
Xiaohu Tang
FedML
27
0
0
21 Jun 2023
Cuttlefish: Low-Rank Model Training without All the Tuning
Hongyi Wang
Saurabh Agarwal
Pongsakorn U-chupala
Yoshiki Tanaka
Eric P. Xing
Dimitris Papailiopoulos
OffRL
56
21
0
04 May 2023
FedCliP: Federated Learning with Client Pruning
Beibei Li
Zerui Shao
Ao Liu
Peiran Wang
FedML
45
1
0
17 Jan 2023
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
54
60
0
02 Aug 2022
Accelerated Federated Learning with Decoupled Adaptive Optimization
Jiayin Jin
Jiaxiang Ren
Yang Zhou
Lingjuan Lyu
Ji Liu
Dejing Dou
AI4CE
FedML
19
51
0
14 Jul 2022
Communication-Efficient Federated Learning with Dual-Side Low-Rank Compression
Zhefeng Qiao
Xianghao Yu
Jun Zhang
Khaled B. Letaief
FedML
41
19
0
26 Apr 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
763
0
28 Sep 2019
1