Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.05533
Cited By
v1
v2
v3 (latest)
Efficient Local Planning with Linear Function Approximation
12 August 2021
Dong Yin
Botao Hao
Yasin Abbasi-Yadkori
N. Lazić
Csaba Szepesvári
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Efficient Local Planning with Linear Function Approximation"
27 / 27 papers shown
Title
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
54
30
0
17 May 2021
Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation
Andrea Zanette
Ching-An Cheng
Alekh Agarwal
80
53
0
24 Mar 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
164
43
0
23 Mar 2021
Bilinear Classes: A Structural Framework for Provable Generalization in RL
S. Du
Sham Kakade
Jason D. Lee
Shachar Lovett
G. Mahajan
Wen Sun
Ruosong Wang
OffRL
168
191
0
19 Mar 2021
Improved Regret Bound and Experience Replay in Regularized Policy Iteration
N. Lazić
Dong Yin
Yasin Abbasi-Yadkori
Csaba Szepesvári
OffRL
38
18
0
25 Feb 2021
On Query-efficient Planning in MDPs under Linear Realizability of the Optimal State-value Function
Gellert Weisz
Philip Amortila
Barnabás Janzer
Yasin Abbasi-Yadkori
Nan Jiang
Csaba Szepesvári
OffRL
47
20
0
03 Feb 2021
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms
Chi Jin
Qinghua Liu
Sobhan Miryoosefi
OffRL
91
217
0
01 Feb 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
249
167
0
06 Jan 2021
Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions
Gellert Weisz
Philip Amortila
Csaba Szepesvári
OffRL
156
80
0
03 Oct 2020
Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
Chen-Yu Wei
Mehdi Jafarnia-Jahromi
Haipeng Luo
Rahul Jain
52
43
0
23 Jul 2020
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning
Alekh Agarwal
Mikael Henaff
Sham Kakade
Wen Sun
OffRL
67
109
0
16 Jul 2020
Efficient Planning in Large MDPs with Weak Linear Function Approximation
R. Shariff
Csaba Szepesvári
62
22
0
13 Jul 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
71
135
0
23 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
89
305
0
01 Jun 2020
Breaking the Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model
Gen Li
Yuting Wei
Yuejie Chi
Yuxin Chen
99
129
0
26 May 2020
Learning Near Optimal Policies with Low Inherent Bellman Error
Andrea Zanette
A. Lazaric
Mykel Kochenderfer
Emma Brunskill
OffRL
71
222
0
29 Feb 2020
Agnostic Q-learning with Function Approximation in Deterministic Systems: Tight Bounds on Approximation Error and Sample Complexity
S. Du
Jason D. Lee
G. Mahajan
Ruosong Wang
43
37
0
17 Feb 2020
Provably Efficient Exploration in Policy Optimization
Qi Cai
Zhuoran Yang
Chi Jin
Zhaoran Wang
56
281
0
12 Dec 2019
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
176
136
0
09 Dec 2019
Comments on the Du-Kakade-Wang-Yang Lower Bounds
Benjamin Van Roy
Shi Dong
138
38
0
18 Nov 2019
Learning with Good Feature Representations in Bandits and in RL with a Generative Model
Tor Lattimore
Csaba Szepesvári
Gellert Weisz
OffRL
158
171
0
18 Nov 2019
Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning?
S. Du
Sham Kakade
Ruosong Wang
Lin F. Yang
181
193
0
07 Oct 2019
Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal
Alekh Agarwal
Sham Kakade
Lin F. Yang
OffRL
89
172
0
10 Jun 2019
Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
Lin F. Yang
Mengdi Wang
OffRL
GP
62
286
0
24 May 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
86
370
0
30 Jan 2019
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Nan Jiang
A. Krishnamurthy
Alekh Agarwal
John Langford
Robert Schapire
147
420
0
29 Oct 2016
On the Sample Complexity of Reinforcement Learning with a Generative Model
M. G. Azar
Rémi Munos
H. Kappen
71
156
0
27 Jun 2012
1