ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04879
  4. Cited By
Excited state, non-adiabatic dynamics of large photoswitchable molecules
  using a chemically transferable machine learning potential

Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential

10 August 2021
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
ArXivPDFHTML

Papers citing "Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential"

4 / 4 papers shown
Title
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
39
370
0
05 Aug 2022
Thermal half-lives of azobenzene derivatives: virtual screening based on
  intersystem crossing using a machine learning potential
Thermal half-lives of azobenzene derivatives: virtual screening based on intersystem crossing using a machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
24
20
0
23 Jul 2022
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
158
246
0
01 May 2021
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
14
13
0
28 Jun 2020
1