Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.04725
Cited By
PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage
10 August 2021
Daniel Scheliga
Patrick Mäder
M. Seeland
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage"
10 / 10 papers shown
Title
FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses
Isaac Baglin
Xiatian Zhu
Simon Hadfield
FedML
32
1
0
05 Nov 2024
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
35
0
0
11 Oct 2024
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
55
19
0
27 Nov 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
Jianfeng Ma
FedML
37
2
0
06 May 2023
A Framework for Evaluating Privacy-Utility Trade-off in Vertical Federated Learning
Yan Kang
Jiahuan Luo
Yuanqin He
Xiaojin Zhang
Lixin Fan
Qiang Yang
FedML
19
15
0
08 Sep 2022
Dropout is NOT All You Need to Prevent Gradient Leakage
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
44
12
0
12 Aug 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
36
46
0
08 Jun 2022
LAMP: Extracting Text from Gradients with Language Model Priors
Mislav Balunović
Dimitar I. Dimitrov
Nikola Jovanović
Martin Vechev
27
57
0
17 Feb 2022
Bayesian Framework for Gradient Leakage
Mislav Balunović
Dimitar I. Dimitrov
Robin Staab
Martin Vechev
FedML
27
41
0
08 Nov 2021
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
78
25
0
27 Apr 2020
1