ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04417
  4. Cited By
Privacy-Preserving Machine Learning: Methods, Challenges and Directions

Privacy-Preserving Machine Learning: Methods, Challenges and Directions

10 August 2021
Runhua Xu
Nathalie Baracaldo
J. Joshi
ArXivPDFHTML

Papers citing "Privacy-Preserving Machine Learning: Methods, Challenges and Directions"

14 / 14 papers shown
Title
Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models
Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models
Xubin Wang
Zhiqing Tang
Jianxiong Guo
Tianhui Meng
Chenhao Wang
Tian-sheng Wang
Weijia Jia
52
1
0
08 Mar 2025
A Tale of Two Imperatives: Privacy and Explainability
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
100
0
0
30 Dec 2024
Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
Harald Semmelrock
Tony Ross-Hellauer
Simone Kopeinik
Dieter Theiler
Armin Haberl
Stefan Thalmann
Dominik Kowald
65
6
0
20 Jun 2024
MultiConfederated Learning: Inclusive Non-IID Data handling with
  Decentralized Federated Learning
MultiConfederated Learning: Inclusive Non-IID Data handling with Decentralized Federated Learning
Michael Duchesne
Kaiwen Zhang
Talhi Chamseddine
FedML
34
0
0
20 Apr 2024
Large Scale Foundation Models for Intelligent Manufacturing
  Applications: A Survey
Large Scale Foundation Models for Intelligent Manufacturing Applications: A Survey
Haotian Zhang
S. D. Semujju
Zhicheng Wang
Xianwei Lv
Kang Xu
...
Jing Wu
Zhuo Long
Wensheng Liang
Xiaoguang Ma
Ruiyan Zhuang
UQCV
AI4TS
AI4CE
29
4
0
11 Dec 2023
When PETs misbehave: A Contextual Integrity analysis
When PETs misbehave: A Contextual Integrity analysis
Ero Balsa
Yan Shvartzshnaider
17
0
0
05 Dec 2023
Privacy Protectability: An Information-theoretical Approach
Privacy Protectability: An Information-theoretical Approach
Siping Shi
Bihai Zhang
Dan Wang
23
1
0
25 May 2023
Privacy-Preserving Machine Learning for Collaborative Data Sharing via
  Auto-encoder Latent Space Embeddings
Privacy-Preserving Machine Learning for Collaborative Data Sharing via Auto-encoder Latent Space Embeddings
A. M. Quintero-Ossa
Jesus Solano
Hernán Jarcía
David Zarruk
Alejandro Correa-Bahnsen
C. Valencia
FedML
21
1
0
10 Nov 2022
Deep Edge Intelligence: Architecture, Key Features, Enabling
  Technologies and Challenges
Deep Edge Intelligence: Architecture, Key Features, Enabling Technologies and Challenges
Prabath Abeysekara
Haipeng Dong
•. A. K. Qin
14
0
0
24 Oct 2022
A Framework for Preserving Privacy and Cybersecurity in Brain-Computer
  Interfacing Applications
A Framework for Preserving Privacy and Cybersecurity in Brain-Computer Interfacing Applications
Maryna Kapitonova
P. Kellmeyer
S. Vogt
T. Ball
21
8
0
19 Sep 2022
Privacy-Preserving Chaotic Extreme Learning Machine with Fully
  Homomorphic Encryption
Privacy-Preserving Chaotic Extreme Learning Machine with Fully Homomorphic Encryption
Syed Imtiaz Ahamed
V. Ravi
34
0
0
04 Aug 2022
Citadel: Protecting Data Privacy and Model Confidentiality for
  Collaborative Learning with SGX
Citadel: Protecting Data Privacy and Model Confidentiality for Collaborative Learning with SGX
Chengliang Zhang
Junzhe Xia
Baichen Yang
Huancheng Puyang
Wei Wang
Ruichuan Chen
Istemi Ekin Akkus
Paarijaat Aditya
Feng Yan
FedML
53
39
0
04 May 2021
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
57
183
0
22 Apr 2021
Threats to Federated Learning: A Survey
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
202
434
0
04 Mar 2020
1