Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.04106
Cited By
Noisy Channel Language Model Prompting for Few-Shot Text Classification
9 August 2021
Sewon Min
Michael Lewis
Hannaneh Hajishirzi
Luke Zettlemoyer
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Noisy Channel Language Model Prompting for Few-Shot Text Classification"
6 / 156 papers shown
Title
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
238
808
0
14 Oct 2021
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners
Ningyu Zhang
Luoqiu Li
Xiang Chen
Shumin Deng
Zhen Bi
Chuanqi Tan
Fei Huang
Huajun Chen
VLM
36
171
0
30 Aug 2021
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
279
1,124
0
18 Apr 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,858
0
18 Apr 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
243
1,924
0
31 Dec 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
365
11,700
0
09 Mar 2017
Previous
1
2
3
4