Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.04062
Cited By
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
5 August 2021
Sahil Singla
Surbhi Singla
S. Feizi
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100"
14 / 14 papers shown
Title
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
33
5
0
02 Feb 2024
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
16
11
0
29 Sep 2023
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
24
9
0
02 Jun 2023
Towards Large Certified Radius in Randomized Smoothing using Quasiconcave Optimization
Bo-Han Kung
Shang-Tse Chen
AAML
19
0
0
01 Feb 2023
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
23
9
0
15 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks
Bernd Prach
Christoph H. Lampert
32
35
0
05 Aug 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
20
11
0
14 Jul 2022
On the Number of Regions of Piecewise Linear Neural Networks
Alexis Goujon
Arian Etemadi
M. Unser
44
13
0
17 Jun 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
27
15
0
13 Apr 2022
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
25
128
0
09 Sep 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
224
348
0
14 Jun 2018
1