Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.04058
Cited By
An Interpretable Probabilistic Model for Short-Term Solar Power Forecasting Using Natural Gradient Boosting
5 August 2021
Georgios Mitrentsis
H. Lens
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Interpretable Probabilistic Model for Short-Term Solar Power Forecasting Using Natural Gradient Boosting"
6 / 6 papers shown
Title
Why Reinforcement Learning in Energy Systems Needs Explanations
Hallah Shahid Butt
Benjamin Schäfer
28
1
0
29 May 2024
Improving the Accuracy and Interpretability of Neural Networks for Wind Power Forecasting
Wenlong Liao
F. Porté-Agel
Jiannong Fang
Birgitte Bak-Jensen
Zhe Yang
Gonghao Zhang
AI4CE
13
1
0
25 Dec 2023
An Explainable Framework for Machine learning-Based Reactive Power Optimization of Distribution Network
Wenlong Liao
Benjamin Schäfer
Dalin Qin
Gonghao Zhang
Zhixian Wang
Zhe Yang
FAtt
13
0
0
07 Nov 2023
Quantifying and Explaining Machine Learning Uncertainty in Predictive Process Monitoring: An Operations Research Perspective
Nijat Mehdiyev
Maxim Majlatow
Peter Fettke
38
12
0
13 Apr 2023
Understanding electricity prices beyond the merit order principle using explainable AI
Julius Trebbien
L. R. Gorjão
Aaron Praktiknjo
B. Schäfer
D. Witthaut
21
25
0
09 Dec 2022
Boosted Ensemble Learning based on Randomized NNs for Time Series Forecasting
Grzegorz Dudek
AI4TS
14
1
0
02 Mar 2022
1