Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.03952
Cited By
Safe Deep Reinforcement Learning for Multi-Agent Systems with Continuous Action Spaces
9 August 2021
Ziyad Sheebaelhamd
Konstantinos Zisis
Athina Nisioti
Dimitris Gkouletsos
Dario Pavllo
Jonas Köhler
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Safe Deep Reinforcement Learning for Multi-Agent Systems with Continuous Action Spaces"
6 / 6 papers shown
Title
Safe Multi-Agent Reinforcement Learning for Formation Control without Individual Reference Targets
Murad Dawood
Sicong Pan
Nils Dengler
Siqi Zhou
Angela P. Schoellig
Maren Bennewitz
OffRL
32
2
0
20 Dec 2023
Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning
Matej Jusup
Barna Pásztor
Tadeusz Janik
Kecheng Zhang
F. Corman
Andreas Krause
Ilija Bogunovic
33
3
0
29 Jun 2023
Emergent Incident Response for Unmanned Warehouses with Multi-agent Systems*
Yibo Guo
Mingxin Li
Jingting Zong
Mingliang Xu
24
0
0
29 May 2023
Multi-Agent Reinforcement Learning: Methods, Applications, Visionary Prospects, and Challenges
Ziyuan Zhou
Guanjun Liu
Ying-Si Tang
33
14
0
17 May 2023
A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Shangding Gu
Longyu Yang
Yali Du
Guang Chen
Florian Walter
Jun Wang
Alois C. Knoll
OffRL
AI4TS
117
239
0
20 May 2022
DeCOM: Decomposed Policy for Constrained Cooperative Multi-Agent Reinforcement Learning
Zhaoxing Yang
Rong Ding
Haiming Jin
Yifei Wei
Haoyi You
Guiyun Fan
Xiaoying Gan
Xinbing Wang
37
4
0
10 Nov 2021
1