ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.01289
  4. Cited By
AdvRush: Searching for Adversarially Robust Neural Architectures
v1v2 (latest)

AdvRush: Searching for Adversarially Robust Neural Architectures

3 August 2021
J. Mok
Byunggook Na
Hyeokjun Choe
Sungroh Yoon
    OODAAML
ArXiv (abs)PDFHTML

Papers citing "AdvRush: Searching for Adversarially Robust Neural Architectures"

17 / 67 papers shown
Title
Virtual Adversarial Training: A Regularization Method for Supervised and
  Semi-Supervised Learning
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
153
2,739
0
13 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural
  Networks
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
97
1,273
0
04 Apr 2017
Large-Scale Evolution of Image Classifiers
Large-Scale Evolution of Image Classifiers
Esteban Real
Sherry Moore
Andrew Selle
Saurabh Saxena
Y. Suematsu
Jie Tan
Quoc V. Le
Alexey Kurakin
145
1,642
0
03 Mar 2017
On Detecting Adversarial Perturbations
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
73
950
0
14 Feb 2017
Designing Neural Network Architectures using Reinforcement Learning
Designing Neural Network Architectures using Reinforcement Learning
Bowen Baker
O. Gupta
Nikhil Naik
Ramesh Raskar
132
1,472
0
07 Nov 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
481
5,385
0
05 Nov 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
152
2,533
0
26 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
803
36,892
0
25 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
282
8,587
0
16 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILMAAML
547
5,912
0
08 Jul 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAUAAML
75
3,685
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
117
3,968
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
154
4,905
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,129
0
20 Dec 2014
Qualitatively characterizing neural network optimization problems
Qualitatively characterizing neural network optimization problems
Ian Goodfellow
Oriol Vinyals
Andrew M. Saxe
ODL
114
524
0
19 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
289
14,968
1
21 Dec 2013
Previous
12