ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.01182
  4. Cited By
Underreporting of errors in NLG output, and what to do about it

Underreporting of errors in NLG output, and what to do about it

2 August 2021
Emiel van Miltenburg
Miruna Clinciu
Ondrej Dusek
Dimitra Gkatzia
Stephanie Inglis
Leo Leppanen
Saad Mahamood
Emma Manning
S. Schoch
Craig Thomson
Luou Wen
ArXivPDFHTML

Papers citing "Underreporting of errors in NLG output, and what to do about it"

18 / 18 papers shown
Title
A Rationale-Centric Framework for Human-in-the-loop Machine Learning
A Rationale-Centric Framework for Human-in-the-loop Machine Learning
Jinghui Lu
Linyi Yang
Brian Mac Namee
Yue Zhang
56
39
0
24 Mar 2022
Experts, Errors, and Context: A Large-Scale Study of Human Evaluation
  for Machine Translation
Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation
Markus Freitag
George F. Foster
David Grangier
Viresh Ratnakar
Qijun Tan
Wolfgang Macherey
142
388
0
29 Apr 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
258
310
0
27 Apr 2021
Preregistering NLP Research
Preregistering NLP Research
Emiel van Miltenburg
Chris van der Lee
E. Krahmer
AI4CE
47
23
0
11 Mar 2021
Generating Intelligible Plumitifs Descriptions: Use Case Application
  with Ethical Considerations
Generating Intelligible Plumitifs Descriptions: Use Case Application with Ethical Considerations
David Beauchemin
Nicolas Garneau
Eve Gaumond
Pierre-Luc Déziel
Richard Khoury
Luc Lamontagne
AILaw
47
9
0
24 Nov 2020
A Gold Standard Methodology for Evaluating Accuracy in Data-To-Text
  Systems
A Gold Standard Methodology for Evaluating Accuracy in Data-To-Text Systems
Craig Thomson
Ehud Reiter
46
52
0
08 Nov 2020
Chart-to-Text: Generating Natural Language Descriptions for Charts by
  Adapting the Transformer Model
Chart-to-Text: Generating Natural Language Descriptions for Charts by Adapting the Transformer Model
Jason Obeid
Enamul Hoque
59
137
0
18 Oct 2020
With Little Power Comes Great Responsibility
With Little Power Comes Great Responsibility
Dallas Card
Peter Henderson
Urvashi Khandelwal
Robin Jia
Kyle Mahowald
Dan Jurafsky
258
117
0
13 Oct 2020
Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Marco Tulio Ribeiro
Tongshuang Wu
Carlos Guestrin
Sameer Singh
ELM
182
1,100
0
08 May 2020
Semantic Noise Matters for Neural Natural Language Generation
Semantic Noise Matters for Neural Natural Language Generation
Ondrej Dusek
David M. Howcroft
Verena Rieser
64
118
0
10 Nov 2019
Show Your Work: Improved Reporting of Experimental Results
Show Your Work: Improved Reporting of Experimental Results
Jesse Dodge
Suchin Gururangan
Dallas Card
Roy Schwartz
Noah A. Smith
72
255
0
06 Sep 2019
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural
  Language Inference
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
R. Thomas McCoy
Ellie Pavlick
Tal Linzen
129
1,234
0
04 Feb 2019
Evaluating the State-of-the-Art of End-to-End Natural Language
  Generation: The E2E NLG Challenge
Evaluating the State-of-the-Art of End-to-End Natural Language Generation: The E2E NLG Challenge
Ondrej Dusek
Jekaterina Novikova
Verena Rieser
ELM
76
232
0
23 Jan 2019
Model Cards for Model Reporting
Model Cards for Model Reporting
Margaret Mitchell
Simone Wu
Andrew Zaldivar
Parker Barnes
Lucy Vasserman
Ben Hutchinson
Elena Spitzer
Inioluwa Deborah Raji
Timnit Gebru
123
1,886
0
05 Oct 2018
Findings of the E2E NLG Challenge
Findings of the E2E NLG Challenge
Ondrej Dusek
Jekaterina Novikova
Verena Rieser
63
115
0
02 Oct 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
83
1,855
0
31 May 2018
Challenges in Data-to-Document Generation
Challenges in Data-to-Document Generation
Sam Wiseman
Stuart M. Shieber
Alexander M. Rush
143
588
0
25 Jul 2017
Room for improvement in automatic image description: an error analysis
Room for improvement in automatic image description: an error analysis
Emiel van Miltenburg
Desmond Elliott
3DV
40
12
0
13 Apr 2017
1