Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.01099
Cited By
Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data
2 August 2021
Qi Zhu
Natalia Ponomareva
Jiawei Han
Bryan Perozzi
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data"
21 / 21 papers shown
Title
Efficient Data Selection for Training Genomic Perturbation Models
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
159
0
0
18 Mar 2025
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
50
2
0
25 Oct 2024
Control the GNN: Utilizing Neural Controller with Lyapunov Stability for Test-Time Feature Reconstruction
Jielong Yang
Rui Ding
Feng Ji
Hongbin Wang
Linbo Xie
40
0
0
13 Oct 2024
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Jinluan Yang
Zhengyu Chen
Teng Xiao
Wenqiao Zhang
Yong Lin
Kun Kuang
53
1
0
18 Aug 2024
Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Akansha Agrawal
UQCV
53
1
0
20 May 2024
Graph Out-of-Distribution Generalization via Causal Intervention
Qitian Wu
Fan Nie
Chenxiao Yang
Tianyi Bao
Junchi Yan
OODD
OOD
AI4CE
40
18
0
18 Feb 2024
Beyond Generalization: A Survey of Out-Of-Distribution Adaptation on Graphs
Shuhan Liu
Kaize Ding
OOD
29
5
0
17 Feb 2024
Deceptive Fairness Attacks on Graphs via Meta Learning
Jian Kang
Yinglong Xia
Ross Maciejewski
Jiebo Luo
Hanghang Tong
36
4
0
24 Oct 2023
Everything Perturbed All at Once: Enabling Differentiable Graph Attacks
Haoran Liu
Bokun Wang
Jianling Wang
Xiangjue Dong
Tianbao Yang
James Caverlee
AAML
28
3
0
29 Aug 2023
Individual and Structural Graph Information Bottlenecks for Out-of-Distribution Generalization
Ling Yang
Jiayi Zheng
Heyuan Wang
Zhongyi Liu
Zhilin Huang
Shenda Hong
Wentao Zhang
Bin Cui
22
13
0
28 Jun 2023
GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks
Wentao Zhao
Qitian Wu
Chenxiao Yang
Junchi Yan
24
12
0
20 Jun 2023
SGL-PT: A Strong Graph Learner with Graph Prompt Tuning
Yun Zhu
Jianhao Guo
Siliang Tang
22
28
0
24 Feb 2023
Curriculum Graph Machine Learning: A Survey
Haoyang Li
Xin Wang
Wenwu Zhu
27
16
0
06 Feb 2023
Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting
Elena Orlova
Haokun Liu
Raphael Rossellini
B. Cash
Rebecca Willett
24
3
0
29 Nov 2022
Empowering Graph Representation Learning with Test-Time Graph Transformation
Wei Jin
Tong Zhao
Jiayu Ding
Yozen Liu
Jiliang Tang
Neil Shah
OOD
86
60
0
07 Oct 2022
TF-GNN: Graph Neural Networks in TensorFlow
Oleksandr Ferludin
Arno Eigenwillig
Martin J. Blais
Dustin Zelle
Jan Pfeifer
...
Anton Tsitsulin
Kevin Villela
Lisa Wang
David Wong
Bryan Perozzi
GNN
16
35
0
07 Jul 2022
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
24
115
0
16 Jun 2022
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
Jintang Li
Bingzhe Wu
Chengbin Hou
Guoji Fu
Yatao Bian
Liang Chen
Junzhou Huang
Zibin Zheng
OOD
AAML
32
6
0
15 Feb 2022
Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization
Qi Zhu
Carl Yang
Yidan Xu
Haonan Wang
Chao Zhang
Jiawei Han
37
116
0
11 Sep 2020
Grale: Designing Networks for Graph Learning
Jonathan J. Halcrow
A. Mosoi
Sam Ruth
Bryan Perozzi
GNN
65
47
0
23 Jul 2020
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
789
0
19 Feb 2009
1