ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.00781
  4. Cited By
Generalization Bounds using Lower Tail Exponents in Stochastic
  Optimizers

Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers

2 August 2021
Liam Hodgkinson
Umut Simsekli
Rajiv Khanna
Michael W. Mahoney
ArXivPDFHTML

Papers citing "Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers"

21 / 21 papers shown
Title
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Romain Chor
Abdellatif Zaidi
Piotr Krasnowski
49
0
0
25 Apr 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Romain Chor
Milad Sefidgaran
Piotr Krasnowski
96
1
0
21 Feb 2025
Understanding the Generalization Error of Markov algorithms through Poissonization
Understanding the Generalization Error of Markov algorithms through Poissonization
Benjamin Dupuis
Maxime Haddouche
George Deligiannidis
Umut Simsekli
49
0
0
11 Feb 2025
Model Balancing Helps Low-data Training and Fine-tuning
Model Balancing Helps Low-data Training and Fine-tuning
Zihang Liu
Yihan Hu
Tianyu Pang
Yefan Zhou
Pu Ren
Yaoqing Yang
42
2
0
16 Oct 2024
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
42
3
0
07 Jun 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
48
2
0
26 Apr 2024
Tighter Generalisation Bounds via Interpolation
Tighter Generalisation Bounds via Interpolation
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
19
3
0
07 Feb 2024
From Mutual Information to Expected Dynamics: New Generalization Bounds
  for Heavy-Tailed SGD
From Mutual Information to Expected Dynamics: New Generalization Bounds for Heavy-Tailed SGD
Benjamin Dupuis
Paul Viallard
18
3
0
01 Dec 2023
Temperature Balancing, Layer-wise Weight Analysis, and Neural Network
  Training
Temperature Balancing, Layer-wise Weight Analysis, and Neural Network Training
Yefan Zhou
Tianyu Pang
Keqin Liu
Charles H. Martin
Michael W. Mahoney
Yaoqing Yang
42
7
0
01 Dec 2023
Approximate Heavy Tails in Offline (Multi-Pass) Stochastic Gradient
  Descent
Approximate Heavy Tails in Offline (Multi-Pass) Stochastic Gradient Descent
Krunoslav Lehman Pavasovic
Alain Durmus
Umut Simsekli
OffRL
26
2
0
27 Oct 2023
From Stability to Chaos: Analyzing Gradient Descent Dynamics in
  Quadratic Regression
From Stability to Chaos: Analyzing Gradient Descent Dynamics in Quadratic Regression
Xuxing Chen
Krishnakumar Balasubramanian
Promit Ghosal
Bhavya Agrawalla
38
7
0
02 Oct 2023
Generalization Guarantees via Algorithm-dependent Rademacher Complexity
Generalization Guarantees via Algorithm-dependent Rademacher Complexity
Sarah Sachs
T. Erven
Liam Hodgkinson
Rajiv Khanna
Umut Simsekli
25
3
0
04 Jul 2023
A unified framework for information-theoretic generalization bounds
A unified framework for information-theoretic generalization bounds
Y.-C. Chu
Maxim Raginsky
30
14
0
18 May 2023
Generalization Bounds with Data-dependent Fractal Dimensions
Generalization Bounds with Data-dependent Fractal Dimensions
Benjamin Dupuis
George Deligiannidis
Umut cSimcsekli
AI4CE
39
12
0
06 Feb 2023
Algorithmic Stability of Heavy-Tailed Stochastic Gradient Descent on
  Least Squares
Algorithmic Stability of Heavy-Tailed Stochastic Gradient Descent on Least Squares
Anant Raj
Melih Barsbey
Mert Gurbuzbalaban
Lingjiong Zhu
Umut Simsekli
19
9
0
02 Jun 2022
Generalization Bounds for Gradient Methods via Discrete and Continuous
  Prior
Generalization Bounds for Gradient Methods via Discrete and Continuous Prior
Jun Yu Li
Xu Luo
Jian Li
27
4
0
27 May 2022
Learning continuous models for continuous physics
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
32
33
0
17 Feb 2022
Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts
  Generalization
Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization
Stanislaw Jastrzebski
Devansh Arpit
Oliver Åstrand
Giancarlo Kerg
Huan Wang
Caiming Xiong
R. Socher
Kyunghyun Cho
Krzysztof J. Geras
AI4CE
184
66
0
28 Dec 2020
Failures of model-dependent generalization bounds for least-norm
  interpolation
Failures of model-dependent generalization bounds for least-norm interpolation
Peter L. Bartlett
Philip M. Long
93
29
0
16 Oct 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
264
4,532
0
23 Jan 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent
  Estimates
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
115
147
0
06 Nov 2019
1