ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.14346
  4. Cited By
Neural Networks for Parameter Estimation in Intractable Models

Neural Networks for Parameter Estimation in Intractable Models

29 July 2021
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
    BDL
ArXivPDFHTML

Papers citing "Neural Networks for Parameter Estimation in Intractable Models"

21 / 21 papers shown
Title
LatticeVision: Image to Image Networks for Modeling Non-Stationary Spatial Data
LatticeVision: Image to Image Networks for Modeling Non-Stationary Spatial Data
Antony Sikorski
Michael I. Ivanitskiy
Nathan Lenssen
Douglas Nychka
Daniel McKenzie
DiffM
16
0
0
14 May 2025
Fast Likelihood-Free Parameter Estimation for Lévy Processes
Fast Likelihood-Free Parameter Estimation for Lévy Processes
Nicolas Coloma
William Kleiber
17
0
0
03 May 2025
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Julia Walchessen
Amanda Lenzi
Mikael Kuusela
35
9
0
31 Dec 2024
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
41
1
0
31 Dec 2024
A Generalized Unified Skew-Normal Process with Neural Bayes Inference
A Generalized Unified Skew-Normal Process with Neural Bayes Inference
Kesen Wang
M. Genton
SyDa
66
0
0
26 Nov 2024
Dimension-reduced Reconstruction Map Learning for Parameter Estimation
  in Likelihood-Free Inference Problems
Dimension-reduced Reconstruction Map Learning for Parameter Estimation in Likelihood-Free Inference Problems
Rui Zhang
O. Chkrebtii
Dongbin Xiu
26
0
0
19 Jul 2024
Latent Variable Sequence Identification for Cognitive Models with Neural
  Bayes Estimation
Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation
Ti-Fen Pan
Jing-Jing Li
Bill Thompson
Anne Collins
BDL
29
0
0
20 Jun 2024
A variational neural Bayes framework for inference on intractable
  posterior distributions
A variational neural Bayes framework for inference on intractable posterior distributions
Elliot Maceda
Emily C. Hector
Amanda Lenzi
Brian J. Reich
21
2
0
16 Apr 2024
Deep learning the Hurst parameter of linear fractional processes and
  assessing its reliability
Deep learning the Hurst parameter of linear fractional processes and assessing its reliability
Dániel Boros
Bálint Csanády
Iván Ivkovic
Lóránt Nagy
András Lukács
Zsolt László Márkus
8
2
0
03 Jan 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
28
15
0
04 Oct 2023
Neural Bayes estimators for censored inference with peaks-over-threshold
  models
Neural Bayes estimators for censored inference with peaks-over-threshold models
J. Richards
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
30
8
0
27 Jun 2023
Inertial Navigation Meets Deep Learning: A Survey of Current Trends and
  Future Directions
Inertial Navigation Meets Deep Learning: A Survey of Current Trends and Future Directions
Nadav Cohen
Itzik Klein
3DGS
16
34
0
22 Jun 2023
Universal Approximation and the Topological Neural Network
Universal Approximation and the Topological Neural Network
M. Kouritzin
Daniel Richard
21
0
0
26 May 2023
Fast parameter estimation of Generalized Extreme Value distribution
  using Neural Networks
Fast parameter estimation of Generalized Extreme Value distribution using Neural Networks
Sweta Rai
Alexis L Hoffman
S. Lahiri
D. Nychka
S. Sain
S. Bandyopadhyay
33
9
0
07 May 2023
Towards black-box parameter estimation
Towards black-box parameter estimation
Amanda Lenzi
Haavard Rue
32
4
0
27 Mar 2023
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
24
34
0
27 Aug 2022
Regression modelling of spatiotemporal extreme U.S. wildfires via
  partially-interpretable neural networks
Regression modelling of spatiotemporal extreme U.S. wildfires via partially-interpretable neural networks
J. Richards
Raphael Huser
13
13
0
16 Aug 2022
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Statistical Deep Learning for Spatial and Spatio-Temporal Data
C. Wikle
A. Zammit‐Mangion
BDL
19
45
0
05 Jun 2022
Spherical Poisson Point Process Intensity Function Modeling and
  Estimation with Measure Transport
Spherical Poisson Point Process Intensity Function Modeling and Estimation with Measure Transport
T. L. J. Ng
A. Zammit‐Mangion
16
3
0
24 Jan 2022
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and
  Machine Learning for Reliable Simulator-Based Inference
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
16
5
0
08 Jul 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
101
184
0
12 Jan 2021
1