Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.13892
Cited By
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
29 July 2021
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning"
35 / 35 papers shown
Title
ADEPT: Hierarchical Bayes Approach to Personalized Federated Unsupervised Learning
Kaan Ozkara
Bruce Huang
Ruida Zhou
Suhas Diggavi
135
0
0
19 Feb 2024
QuPeL: Quantized Personalization with Applications to Federated Learning
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
38
5
0
23 Feb 2021
Personalized Federated Learning with First Order Model Optimization
Michael Zhang
Karan Sapra
Sanja Fidler
Serena Yeung
J. Álvarez
FedML
53
290
0
15 Dec 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
101
189
0
05 Oct 2020
DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural Networks
Hassan Dbouk
Hetul Sanghvi
M. Mehendale
Naresh R Shanbhag
MQ
32
9
0
19 Jul 2020
Federated Mutual Learning
Tao Shen
Jie Zhang
Xinkang Jia
Fengda Zhang
Gang Huang
Pan Zhou
Kun Kuang
Leilei Gan
Chao-Xiang Wu
FedML
59
121
0
27 Jun 2020
Personalized Federated Learning with Moreau Envelopes
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
FedML
56
982
0
16 Jun 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
56
1,026
0
12 Jun 2020
An Efficient Framework for Clustered Federated Learning
Avishek Ghosh
Jichan Chung
Dong Yin
Kannan Ramchandran
FedML
44
846
0
07 Jun 2020
SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized Optimization
Navjot Singh
Deepesh Data
Jemin George
Suhas Diggavi
23
55
0
13 May 2020
Binary Neural Networks: A Survey
Haotong Qin
Ruihao Gong
Xianglong Liu
Xiao Bai
Jingkuan Song
N. Sebe
MQ
88
463
0
31 Mar 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
278
549
0
30 Mar 2020
Three Approaches for Personalization with Applications to Federated Learning
Yishay Mansour
M. Mohri
Jae Hun Ro
A. Suresh
FedML
106
569
0
25 Feb 2020
Personalized Federated Learning: A Meta-Learning Approach
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
FedML
139
566
0
19 Feb 2020
Federated Learning of a Mixture of Global and Local Models
Filip Hanzely
Peter Richtárik
FedML
28
380
0
10 Feb 2020
Quantization Networks
Jiwei Yang
Xu Shen
Jun Xing
Xinmei Tian
Houqiang Li
Bing Deng
Jianqiang Huang
Xiansheng Hua
MQ
53
339
0
21 Nov 2019
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
75
845
0
08 Oct 2019
Differentiable Soft Quantization: Bridging Full-Precision and Low-Bit Neural Networks
Ruihao Gong
Xianglong Liu
Shenghu Jiang
Tian-Hao Li
Peng Hu
Jiazhen Lin
F. Yu
Junjie Yan
MQ
51
449
0
14 Aug 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
38
403
0
06 Jun 2019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
49
496
0
28 Jan 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
83
5,105
0
14 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
104
1,410
0
03 Dec 2018
Relaxed Quantization for Discretized Neural Networks
Christos Louizos
M. Reisser
Tijmen Blankevoort
E. Gavves
Max Welling
MQ
55
132
0
03 Oct 2018
ProxQuant: Quantized Neural Networks via Proximal Operators
Yu Bai
Yu Wang
Edo Liberty
MQ
42
117
0
01 Oct 2018
Model compression via distillation and quantization
A. Polino
Razvan Pascanu
Dan Alistarh
MQ
67
722
0
15 Feb 2018
BinaryRelax: A Relaxation Approach For Training Deep Neural Networks With Quantized Weights
Penghang Yin
Shuai Zhang
J. Lyu
Stanley Osher
Y. Qi
Jack Xin
MQ
45
79
0
19 Jan 2018
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
Cong Leng
Hao Li
Shenghuo Zhu
Rong Jin
MQ
51
286
0
24 Jul 2017
Training Quantized Nets: A Deeper Understanding
Hao Li
Soham De
Zheng Xu
Christoph Studer
H. Samet
Tom Goldstein
MQ
37
210
0
07 Jun 2017
Deep Mutual Learning
Ying Zhang
Tao Xiang
Timothy M. Hospedales
Huchuan Lu
FedML
113
1,645
0
01 Jun 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
88
1,791
0
30 May 2017
Loss-aware Binarization of Deep Networks
Lu Hou
Quanming Yao
James T. Kwok
MQ
54
220
0
05 Nov 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
229
17,235
0
17 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
192
8,793
0
01 Oct 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
228
19,448
0
09 Mar 2015
1