Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.12342
Cited By
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial Activations in Privacy-Preserving Deep Learning
26 July 2021
Karthik Garimella
N. Jha
Brandon Reagen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial Activations in Privacy-Preserving Deep Learning"
35 / 35 papers shown
Title
Precise Approximation of Convolutional Neural Networks for Homomorphically Encrypted Data
Junghyun Lee
Eunsang Lee
Joon-Woo Lee
Yongjune Kim
Young-Sik Kim
Jong-Seon No
87
58
0
23 May 2021
DeepReDuce: ReLU Reduction for Fast Private Inference
N. Jha
Zahra Ghodsi
S. Garg
Brandon Reagen
70
91
0
02 Mar 2021
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
120
314
0
13 Oct 2020
CryptoNAS: Private Inference on a ReLU Budget
Zahra Ghodsi
A. Veldanda
Brandon Reagen
S. Garg
53
87
0
15 Jun 2020
BLAZE: Blazing Fast Privacy-Preserving Machine Learning
A. Patra
Ajith Suresh
61
197
0
18 May 2020
Dynamic ReLU
Yinpeng Chen
Xiyang Dai
Mengchen Liu
Dongdong Chen
Lu Yuan
Zicheng Liu
235
165
0
22 Mar 2020
Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning
Harsh Chaudhari
Rahul Rachuri
Ajith Suresh
69
214
0
05 Dec 2019
ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction
Harsh Chaudhari
Ashish Choudhury
A. Patra
Ajith Suresh
48
130
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
493
42,449
0
03 Dec 2019
Mish: A Self Regularized Non-Monotonic Activation Function
Diganta Misra
63
680
0
23 Aug 2019
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
Alejandro Molina
P. Schramowski
Kristian Kersting
ODL
34
80
0
15 Jul 2019
XONN: XNOR-based Oblivious Deep Neural Network Inference
M. Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin E. Lauter
F. Koushanfar
FedML
GNN
BDL
56
282
0
19 Feb 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,666
0
04 Feb 2019
Faster CryptoNets: Leveraging Sparsity for Real-World Encrypted Inference
Edward Chou
Josh Beal
Daniel Levy
Serena Yeung
Albert Haque
Li Fei-Fei
47
198
0
25 Nov 2018
Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs
Ahmad Al Badawi
Jin Chao
Jie Lin
Chan Fook Mun
Sim Jun Jie
B. Tan
Xiao Nan
Khin Mi Mi Aung
V. Chandrasekhar
55
64
0
02 Nov 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,100
0
28 Sep 2018
TAPAS: Tricks to Accelerate (encrypted) Prediction As a Service
Amartya Sanyal
Matt J. Kusner
Adria Gascon
Varun Kanade
FedML
63
127
0
09 Jun 2018
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
171
397
0
08 Jun 2018
Chiron: Privacy-preserving Machine Learning as a Service
T. Hunt
Congzheng Song
Reza Shokri
Vitaly Shmatikov
Emmett Witchel
44
201
0
15 Mar 2018
Gazelle: A Low Latency Framework for Secure Neural Network Inference
Chiraag Juvekar
Vinod Vaikuntanathan
A. Chandrakasan
60
892
0
16 Jan 2018
Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications
M. Riazi
Christian Weinert
Oleksandr Tkachenko
Ebrahim M. Songhori
T. Schneider
F. Koushanfar
FedML
46
494
0
10 Jan 2018
CryptoDL: Deep Neural Networks over Encrypted Data
Ehsan Hesamifard
Hassan Takabi
Mehdi Ghasemi
55
380
0
14 Nov 2017
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
455
2,516
0
08 Jun 2017
DeepSecure: Scalable Provably-Secure Deep Learning
B. Rouhani
M. Riazi
F. Koushanfar
FedML
52
415
0
24 May 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,837
0
17 Apr 2017
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
303
4,646
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
205
6,121
0
01 Jul 2016
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
169
5,000
0
27 Jun 2016
Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units
Wenling Shang
Kihyuk Sohn
Diogo Almeida
Honglak Lee
72
505
0
16 Mar 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
300
5,524
0
23 Nov 2015
Empirical Evaluation of Rectified Activations in Convolutional Network
Bing Xu
Naiyan Wang
Tianqi Chen
Mu Li
135
2,912
0
05 May 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
323
18,625
0
06 Feb 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,386
0
04 Sep 2014
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
353
7,942
0
13 Jun 2012
1