ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.12102
  4. Cited By
Global optimization using random embeddings

Global optimization using random embeddings

26 July 2021
C. Cartis
E. Massart
Adilet Otemissov
ArXiv (abs)PDFHTML

Papers citing "Global optimization using random embeddings"

9 / 9 papers shown
Title
An Empirical Study of Derivative-Free-Optimization Algorithms for
  Targeted Black-Box Attacks in Deep Neural Networks
An Empirical Study of Derivative-Free-Optimization Algorithms for Targeted Black-Box Attacks in Deep Neural Networks
Giuseppe Ughi
V. Abrol
Jared Tanner
AAML
51
13
0
03 Dec 2020
Zeroth-Order Regularized Optimization (ZORO): Approximately Sparse
  Gradients and Adaptive Sampling
Zeroth-Order Regularized Optimization (ZORO): Approximately Sparse Gradients and Adaptive Sampling
HanQin Cai
Daniel McKenzie
W. Yin
Zhenliang Zhang
119
50
0
29 Mar 2020
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCVBDL
78
144
0
17 Jul 2019
Adaptive and Safe Bayesian Optimization in High Dimensions via
  One-Dimensional Subspaces
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces
Johannes Kirschner
Mojmír Mutný
N. Hiller
R. Ischebeck
Andreas Krause
92
149
0
08 Feb 2019
Active Learning of Linear Embeddings for Gaussian Processes
Active Learning of Linear Embeddings for Gaussian Processes
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
111
92
0
24 Oct 2013
Learning Non-Parametric Basis Independent Models from Point Queries via
  Low-Rank Methods
Learning Non-Parametric Basis Independent Models from Point Queries via Low-Rank Methods
Hemant Tyagi
Volkan Cevher
104
45
0
07 Oct 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
197
446
0
09 Jan 2013
Parallel Coordinate Descent Methods for Big Data Optimization
Parallel Coordinate Descent Methods for Big Data Optimization
Peter Richtárik
Martin Takáč
130
487
0
04 Dec 2012
Optimization with Sparsity-Inducing Penalties
Optimization with Sparsity-Inducing Penalties
Francis R. Bach
Rodolphe Jenatton
Julien Mairal
G. Obozinski
237
1,058
0
03 Aug 2011
1