Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.12045
Cited By
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
26 July 2021
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review"
33 / 33 papers shown
Title
CoCoAFusE: Beyond Mixtures of Experts via Model Fusion
Aurelio Raffa Ugolini
M. Tanelli
Valentina Breschi
MoE
24
0
0
02 May 2025
Operational range bounding of spectroscopy models with anomaly detection
Luís F. Simoes
Pierluigi Casale
Marília Felismino
K. H. Yip
Ingo P. Waldmann
Giovanna Tinetti
T. Lueftinger
18
0
0
05 Aug 2024
Distributionally Robust Constrained Reinforcement Learning under Strong Duality
Zhengfei Zhang
Kishan Panaganti
Laixi Shi
Yanan Sui
Adam Wierman
Yisong Yue
OOD
39
3
0
22 Jun 2024
Science based AI model certification for new operational environments with application in traffic state estimation
Daryl Mupupuni
Anupama Guntu
Liang Hong
Kamrul Hasan
Leehyun Keel
21
0
0
13 May 2024
Forward Learning for Gradient-based Black-box Saliency Map Generation
Zeliang Zhang
Mingqian Feng
Jinyang Jiang
Rongyi Zhu
Yijie Peng
Chenliang Xu
FAtt
34
2
0
22 Mar 2024
Testing Spintronics Implemented Monte Carlo Dropout-Based Bayesian Neural Networks
Soyed Tuhin Ahmed
Michael Hefenbrock
G. Prenat
L. Anghel
M. Tahoori
24
0
0
09 Jan 2024
Learning Polynomial Representations of Physical Objects with Application to Certifying Correct Packing Configurations
Morgan Jones
25
0
0
11 Dec 2023
METAL: Metamorphic Testing Framework for Analyzing Large-Language Model Qualities
Sangwon Hyun
Mingyu Guo
Muhammad Ali Babar
36
8
0
11 Dec 2023
Modeling Risk in Reinforcement Learning: A Literature Mapping
Leonardo Villalobos-Arias
Derek Martin
Abhijeet Krishnan
Madeleine Gagné
Colin M. Potts
Arnav Jhala
20
0
0
08 Dec 2023
Synergistic Perception and Control Simplex for Verifiable Safe Vertical Landing
Ayoosh Bansal
Yang Zhao
James Zhu
Sheng Cheng
Yuliang Gu
Hyung-Jin Yoon
Hunmin Kim
N. Hovakimyan
Lui Sha
26
2
0
05 Dec 2023
GIST: Generated Inputs Sets Transferability in Deep Learning
Florian Tambon
Foutse Khomh
G. Antoniol
AAML
37
1
0
01 Nov 2023
SEE-OoD: Supervised Exploration For Enhanced Out-of-Distribution Detection
Xiaoyang Song
Wenbo Sun
Maher Nouiehed
Raed Al Kontar
J. Jin
OODD
34
0
0
12 Oct 2023
Data Cleaning and Machine Learning: A Systematic Literature Review
Pierre-Olivier Coté
Amin Nikanjam
Nafisa Ahmed
D. Humeniuk
Foutse Khomh
44
22
0
03 Oct 2023
Verifying Safety of Neural Networks from Topological Perspectives
Zhen Liang
Dejin Ren
Bai Xue
J. Wang
Wenjing Yang
Wanwei Liu
AAML
33
0
0
27 Jun 2023
Memory Efficient Neural Processes via Constant Memory Attention Block
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Yoshua Bengio
Mohamed Osama Ahmed
31
5
0
23 May 2023
Optimality Principles in Spacecraft Neural Guidance and Control
Dario Izzo
E. Blazquez
Robin Ferede
Sebastien Origer
Christophe De Wagter
Guido C. H. E de Croon
26
8
0
22 May 2023
Delay-SDE-net: A deep learning approach for time series modelling with memory and uncertainty estimates
M. Eggen
A. Midtfjord
21
2
0
14 Mar 2023
DeepGD: A Multi-Objective Black-Box Test Selection Approach for Deep Neural Networks
Zohreh Aghababaeyan
Manel Abdellatif
Mahboubeh Dadkhah
Lionel C. Briand
AAML
34
16
0
08 Mar 2023
DiffTune: Auto-Tuning through Auto-Differentiation
Sheng Cheng
Minkyung Kim
Lin Song
Chengyu Yang
Zhuohuan Wu
Shenlong Wang
N. Hovakimyan
36
6
0
20 Sep 2022
Perception Simplex: Verifiable Collision Avoidance in Autonomous Vehicles Amidst Obstacle Detection Faults
Ayoosh Bansal
Hunmin Kim
Simon Yu
Bo-wen Li
N. Hovakimyan
Marco Caccamo
L. Sha
AAML
37
4
0
04 Sep 2022
A Probabilistic Framework for Mutation Testing in Deep Neural Networks
Florian Tambon
Foutse Khomh
G. Antoniol
MedIm
16
13
0
11 Aug 2022
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System
Markus Borg
Jens Henriksson
Kasper Socha
Olof Lennartsson
Elias Sonnsjo Lonegren
T. Bui
Piotr Tomaszewski
S. Sathyamoorthy
Sebastian Brink
M. H. Moghadam
35
23
0
16 Apr 2022
Hardware Approximate Techniques for Deep Neural Network Accelerators: A Survey
Giorgos Armeniakos
Georgios Zervakis
Dimitrios Soudris
J. Henkel
217
93
0
16 Mar 2022
Safe AI -- How is this Possible?
Harald Ruess
Simon Burton
24
0
0
25 Jan 2022
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
186
275
0
28 Sep 2021
Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning
Lukas Brunke
Melissa Greeff
Adam W. Hall
Zhaocong Yuan
Siqi Zhou
Jacopo Panerati
Angela P. Schoellig
OffRL
34
603
0
13 Aug 2021
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
67
63
0
02 Mar 2020
Analyzing the Noise Robustness of Deep Neural Networks
Kelei Cao
Mengchen Liu
Hang Su
Jing Wu
Jun Zhu
Shixia Liu
AAML
60
89
0
26 Jan 2020
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
80
1,234
0
30 Nov 2018
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
47
87
0
02 Oct 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,838
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1