Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.11630
Cited By
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
24 July 2021
Florian Tramèr
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them"
41 / 41 papers shown
Title
A Cryptographic Perspective on Mitigation vs. Detection in Machine Learning
Greg Gluch
Shafi Goldwasser
AAML
37
0
0
28 Apr 2025
Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics
Taowen Wang
Dongfang Liu
James Liang
Wenhao Yang
Qifan Wang
Cheng Han
Jiebo Luo
Ruixiang Tang
Ruixiang Tang
AAML
76
3
0
18 Nov 2024
Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations
Jianfeng Chi
Ujjwal Karn
Hongyuan Zhan
Eric Michael Smith
Javier Rando
Yiming Zhang
Kate Plawiak
Zacharie Delpierre Coudert
Kartikeya Upasani
Mahesh Pasupuleti
MLLM
3DH
49
20
0
15 Nov 2024
Low-Quality Image Detection by Hierarchical VAE
Tomoyasu Nanaumi
Kazuhiko Kawamoto
Hiroshi Kera
27
0
0
20 Aug 2024
Towards Robust Vision Transformer via Masked Adaptive Ensemble
Fudong Lin
Jiadong Lou
Xu Yuan
Nianfeng Tzeng
ViT
AAML
28
1
0
22 Jul 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
39
0
0
26 Jun 2024
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Peter Lorenz
Mario Fernandez
Jens Müller
Ullrich Kothe
AAML
78
1
0
21 Jun 2024
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
48
2
0
27 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
PASA: Attack Agnostic Unsupervised Adversarial Detection using Prediction & Attribution Sensitivity Analysis
Dipkamal Bhusal
Md Tanvirul Alam
M. K. Veerabhadran
Michael Clifford
Sara Rampazzi
Nidhi Rastogi
AAML
43
1
0
12 Apr 2024
SoK: Analyzing Adversarial Examples: A Framework to Study Adversary Knowledge
L. Fenaux
Florian Kerschbaum
AAML
39
0
0
22 Feb 2024
The Ultimate Combo: Boosting Adversarial Example Transferability by Composing Data Augmentations
Zebin Yun
Achi-Or Weingarten
Eyal Ronen
Mahmood Sharif
12
2
0
18 Dec 2023
Breaking Boundaries: Balancing Performance and Robustness in Deep Wireless Traffic Forecasting
Romain Ilbert
Thai V. Hoang
Zonghua Zhang
Themis Palpanas
OOD
AAML
31
0
0
16 Nov 2023
AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large Language Models
Sicheng Zhu
Ruiyi Zhang
Bang An
Gang Wu
Joe Barrow
Zichao Wang
Furong Huang
A. Nenkova
Tong Sun
SILM
AAML
30
40
0
23 Oct 2023
Is Certifying
ℓ
p
\ell_p
ℓ
p
Robustness Still Worthwhile?
Ravi Mangal
Klas Leino
Zifan Wang
Kai Hu
Weicheng Yu
Corina S. Pasareanu
Anupam Datta
Matt Fredrikson
AAML
OOD
27
1
0
13 Oct 2023
Splitting the Difference on Adversarial Training
Matan Levi
A. Kontorovich
37
4
0
03 Oct 2023
Beyond Labeling Oracles: What does it mean to steal ML models?
Avital Shafran
Ilia Shumailov
Murat A. Erdogdu
Nicolas Papernot
AAML
24
4
0
03 Oct 2023
Baseline Defenses for Adversarial Attacks Against Aligned Language Models
Neel Jain
Avi Schwarzschild
Yuxin Wen
Gowthami Somepalli
John Kirchenbauer
Ping Yeh-Chiang
Micah Goldblum
Aniruddha Saha
Jonas Geiping
Tom Goldstein
AAML
37
337
0
01 Sep 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
34
3
0
20 Aug 2023
Robust Proxy: Improving Adversarial Robustness by Robust Proxy Learning
Hong Joo Lee
Yonghyun Ro
AAML
28
3
0
27 Jun 2023
Visual Adversarial Examples Jailbreak Aligned Large Language Models
Xiangyu Qi
Kaixuan Huang
Ashwinee Panda
Peter Henderson
Mengdi Wang
Prateek Mittal
AAML
25
137
0
22 Jun 2023
From Robustness to Explainability and Back Again
Xuanxiang Huang
João Marques-Silva
32
10
0
05 Jun 2023
Two Heads are Better than One: Towards Better Adversarial Robustness by Combining Transduction and Rejection
Nils Palumbo
Yang Guo
Xi Wu
Jiefeng Chen
Yingyu Liang
S. Jha
AAML
23
0
0
27 May 2023
Stratified Adversarial Robustness with Rejection
Jiefeng Chen
Jayaram Raghuram
Jihye Choi
Xi Wu
Yingyu Liang
S. Jha
27
2
0
02 May 2023
Evaluation of Parameter-based Attacks against Embedded Neural Networks with Laser Injection
Mathieu Dumont
Kevin Hector
Pierre-Alain Moëllic
J. Dutertre
S. Pontié
AAML
23
2
0
25 Apr 2023
Simultaneous Adversarial Attacks On Multiple Face Recognition System Components
Inderjeet Singh
Kazuya Kakizaki
Toshinori Araki
CVBM
AAML
PICV
21
0
0
11 Apr 2023
Certifiable Black-Box Attacks with Randomized Adversarial Examples: Breaking Defenses with Provable Confidence
Hanbin Hong
Xinyu Zhang
Binghui Wang
Zhongjie Ba
Yuan Hong
AAML
22
2
0
10 Apr 2023
A Minimax Approach Against Multi-Armed Adversarial Attacks Detection
Federica Granese
Marco Romanelli
S. Garg
Pablo Piantanida
AAML
19
0
0
04 Feb 2023
Publishing Efficient On-device Models Increases Adversarial Vulnerability
Sanghyun Hong
Nicholas Carlini
Alexey Kurakin
AAML
38
2
0
28 Dec 2022
Improving Adversarial Robustness via Joint Classification and Multiple Explicit Detection Classes
Sina Baharlouei
Fatemeh Sheikholeslami
Meisam Razaviyayn
Zico Kolter
AAML
19
6
0
26 Oct 2022
Be Your Own Neighborhood: Detecting Adversarial Example by the Neighborhood Relations Built on Self-Supervised Learning
Zhiyuan He
Yijun Yang
Pin-Yu Chen
Qiang Xu
Tsung-Yi Ho
AAML
19
6
0
31 Aug 2022
Gradient Aligned Attacks via a Few Queries
Xiangyuan Yang
Jie Lin
Hanlin Zhang
Xinyu Yang
Peng Zhao
AAML
35
0
0
19 May 2022
A Manifold Two-Sample Test Study: Integral Probability Metric with Neural Networks
Jie Wang
Minshuo Chen
Tuo Zhao
Wenjing Liao
Yao Xie
17
7
0
04 May 2022
Detecting Adversaries, yet Faltering to Noise? Leveraging Conditional Variational AutoEncoders for Adversary Detection in the Presence of Noisy Images
Dvij Kalaria
Aritra Hazra
P. Chakrabarti
AAML
20
0
0
28 Nov 2021
Bugs in our Pockets: The Risks of Client-Side Scanning
H. Abelson
Ross J. Anderson
S. Bellovin
Josh Benaloh
M. Blaze
...
Ronald L. Rivest
J. Schiller
B. Schneier
Vanessa J. Teague
Carmela Troncoso
60
39
0
14 Oct 2021
PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier
Chong Xiang
Saeed Mahloujifar
Prateek Mittal
VLM
AAML
24
73
0
20 Aug 2021
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart
Tianyu Pang
Huishuai Zhang
Di He
Yinpeng Dong
Hang Su
Wei Chen
Jun Zhu
Tie-Yan Liu
AAML
8
16
0
31 May 2021
Anomaly Detection of Adversarial Examples using Class-conditional Generative Adversarial Networks
Hang Wang
David J. Miller
G. Kesidis
GAN
AAML
27
11
0
21 May 2021
BAARD: Blocking Adversarial Examples by Testing for Applicability, Reliability and Decidability
Luke Chang
Katharina Dost
Kaiqi Zhao
Ambra Demontis
Fabio Roli
Gillian Dobbie
Jörg Simon Wicker
AAML
19
2
0
02 May 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
228
677
0
19 Oct 2020
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
52
101
0
16 Oct 2019
1