ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.11625
23
3

Discrete Denoising Flows

24 July 2021
Alexandra Lindt
Emiel Hoogeboom
    BDL
    DRL
ArXivPDFHTML
Abstract

Discrete flow-based models are a recently proposed class of generative models that learn invertible transformations for discrete random variables. Since they do not require data dequantization and maximize an exact likelihood objective, they can be used in a straight-forward manner for lossless compression. In this paper, we introduce a new discrete flow-based model for categorical random variables: Discrete Denoising Flows (DDFs). In contrast with other discrete flow-based models, our model can be locally trained without introducing gradient bias. We show that DDFs outperform Discrete Flows on modeling a toy example, binary MNIST and Cityscapes segmentation maps, measured in log-likelihood.

View on arXiv
Comments on this paper