Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.11400
Cited By
Robust Explainability: A Tutorial on Gradient-Based Attribution Methods for Deep Neural Networks
23 July 2021
Ian E. Nielsen
Dimah Dera
Ghulam Rasool
N. Bouaynaya
R. Ramachandran
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Explainability: A Tutorial on Gradient-Based Attribution Methods for Deep Neural Networks"
13 / 13 papers shown
Title
Human-inspired Explanations for Vision Transformers and Convolutional Neural Networks
Mahadev Prasad Panda
Matteo Tiezzi
Martina Vilas
Gemma Roig
Bjoern M. Eskofier
Dario Zanca
ViT
AAML
41
1
0
04 Aug 2024
Stability of Explainable Recommendation
Sairamvinay Vijayaraghavan
Prasant Mohapatra
AAML
40
1
0
03 May 2024
Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
Xuexin Chen
Ruichu Cai
Zhengting Huang
Yuxuan Zhu
Julien Horwood
Zhifeng Hao
Zijian Li
Jose Miguel Hernandez-Lobato
AAML
38
2
0
13 Feb 2024
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
37
0
0
08 Jul 2023
Towards Explainable AI for Channel Estimation in Wireless Communications
Abdul Karim Gizzini
Y. Medjahdi
A. Ghandour
Laurent Clavier
6
15
0
03 Jul 2023
Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review
Asim Waqas
Aakash Tripathi
Ravichandran Ramachandran
Paul Stewart
Ghulam Rasool
AI4CE
42
32
0
11 Mar 2023
Tracr: Compiled Transformers as a Laboratory for Interpretability
David Lindner
János Kramár
Sebastian Farquhar
Matthew Rahtz
Tom McGrath
Vladimir Mikulik
34
72
0
12 Jan 2023
Privacy Meets Explainability: A Comprehensive Impact Benchmark
S. Saifullah
Dominique Mercier
Adriano Lucieri
Andreas Dengel
Sheraz Ahmed
35
14
0
08 Nov 2022
Explainable Deep Learning to Profile Mitochondrial Disease Using High Dimensional Protein Expression Data
Atif Khan
C. Lawless
Amy Vincent
Satish Pilla
S. Ramesh
A. Mcgough
36
0
0
31 Oct 2022
Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks
Tilman Raukur
A. Ho
Stephen Casper
Dylan Hadfield-Menell
AAML
AI4CE
28
124
0
27 Jul 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Time to Focus: A Comprehensive Benchmark Using Time Series Attribution Methods
Dominique Mercier
Jwalin Bhatt
Andreas Dengel
Sheraz Ahmed
AI4TS
22
11
0
08 Feb 2022
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez
Alberto Lamas
Jules Sanchez
Gianni Franchi
Ivan Donadello
Siham Tabik
David Filliat
P. Cruz
Rosana Montes
Francisco Herrera
49
77
0
24 Apr 2021
1