ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.10400
  4. Cited By
Species Distribution Modeling for Machine Learning Practitioners: A
  Review

Species Distribution Modeling for Machine Learning Practitioners: A Review

3 July 2021
Sara Beery
Elijah Cole
Joseph Parker
Pietro Perona
Kevin Winner
ArXivPDFHTML

Papers citing "Species Distribution Modeling for Machine Learning Practitioners: A Review"

17 / 17 papers shown
Title
Heterogeneous graph neural networks for species distribution modeling
Heterogeneous graph neural networks for species distribution modeling
Lauren Harrell
Christine Kaeser-Chen
Burcu Karagol Ayan
Keith Anderson
Michelangelo Conserva
Elise Kleeman
Maxim Neumann
Matt Overlan
Melissa Chapman
Drew Purves
49
0
0
14 Mar 2025
Few-shot Species Range Estimation
Few-shot Species Range Estimation
Christian Lange
Max Hamilton
Elijah Cole
Alexander Shepard
Samuel Heinrich
Angela Zhu
Subhransu Maji
Grant Van Horn
Oisin Mac Aodha
81
0
0
24 Feb 2025
Multi-Scale and Multimodal Species Distribution Modeling
Multi-Scale and Multimodal Species Distribution Modeling
Nina Van Tiel
Robin Zbinden
Emanuele Dalsasso
B. Kellenberger
Loïc Pellissier
D. Tuia
21
1
0
06 Nov 2024
Hybrid Spatial Representations for Species Distribution Modeling
Hybrid Spatial Representations for Species Distribution Modeling
Shiran Yuan
Hao Zhao
30
0
0
14 Oct 2024
Combining Observational Data and Language for Species Range Estimation
Combining Observational Data and Language for Species Range Estimation
Max Hamilton
Christian Lange
Elijah Cole
Alexander Shepard
Samuel Heinrich
Oisin Mac Aodha
Grant Van Horn
Subhransu Maji
23
5
0
14 Oct 2024
Generating Binary Species Range Maps
Generating Binary Species Range Maps
Filip Dorm
Christian Lange
S. Loarie
Oisin Mac Aodha
42
3
0
28 Aug 2024
Predicting Species Occurrence Patterns from Partial Observations
Predicting Species Occurrence Patterns from Partial Observations
Hager Radi Abdelwahed
Mélisande Teng
David Rolnick
11
1
0
26 Mar 2024
LD-SDM: Language-Driven Hierarchical Species Distribution Modeling
LD-SDM: Language-Driven Hierarchical Species Distribution Modeling
S. Sastry
Xin Xing
A. Dhakal
Subash Khanal
Adeel Ahmad
Nathan Jacobs
39
5
0
13 Dec 2023
Active Learning-Based Species Range Estimation
Active Learning-Based Species Range Estimation
Christian Lange
Elijah Cole
Grant Van Horn
Oisin Mac Aodha
AI4TS
32
8
0
03 Nov 2023
SatBird: Bird Species Distribution Modeling with Remote Sensing and
  Citizen Science Data
SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Yoshua Bengio
Hager Radi Abdelwahed
Hugo Larochelle
David Rolnick
9
4
0
02 Nov 2023
Spatial Implicit Neural Representations for Global-Scale Species Mapping
Spatial Implicit Neural Representations for Global-Scale Species Mapping
Elijah Cole
Grant Van Horn
Christian Lange
Alexander Shepard
Patrick R. Leary
Pietro Perona
S. Loarie
Oisin Mac Aodha
31
36
0
05 Jun 2023
Bird Distribution Modelling using Remote Sensing and Citizen Science
  data
Bird Distribution Modelling using Remote Sensing and Citizen Science data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hugo Larochelle
David Rolnick
71
8
0
01 May 2023
Conservation Tools: The Next Generation of Engineering--Biology
  Collaborations
Conservation Tools: The Next Generation of Engineering--Biology Collaborations
Andrew Schulz
Cassie Shriver
Suzanne Stathatos
Benjamin Seleb
E. Weigel
Young-Hui Chang
M. S. Bhamla
David Hu
Biomolecular Engineering Georgia Tech
Zoo Atlanta
16
14
0
03 Jan 2023
Machine Learning and Deep Learning -- A review for Ecologists
Machine Learning and Deep Learning -- A review for Ecologists
Maximilian Pichler
F. Hartig
45
127
0
11 Apr 2022
TIML: Task-Informed Meta-Learning for Agriculture
TIML: Task-Informed Meta-Learning for Agriculture
Gabriel Tseng
Hannah Kerner
David Rolnick
19
7
0
04 Feb 2022
On pseudo-absence generation and machine learning for locust breeding
  ground prediction in Africa
On pseudo-absence generation and machine learning for locust breeding ground prediction in Africa
I. Yusuf
Kale-ab Tessera
Thomas Tumiel
Zohra Slim
Amine Kerkeni
Sella Nevo
Arnu Pretorius
14
2
0
06 Nov 2021
Seeing biodiversity: perspectives in machine learning for wildlife
  conservation
Seeing biodiversity: perspectives in machine learning for wildlife conservation
D. Tuia
B. Kellenberger
Sara Beery
Blair R. Costelloe
Silvia Zuffi
...
I. Couzin
Grant Van Horn
M. Crofoot
Chuck Stewart
T. Berger-Wolf
33
392
0
25 Oct 2021
1