Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.10125
Cited By
A variational approximate posterior for the deep Wishart process
21 July 2021
Sebastian W. Ober
Laurence Aitchison
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A variational approximate posterior for the deep Wishart process"
8 / 8 papers shown
Title
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
28
0
0
08 Oct 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
52
27
0
01 Feb 2024
Convolutional Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
BDL
26
5
0
18 Sep 2023
An Improved Variational Approximate Posterior for the Deep Wishart Process
Sebastian W. Ober
Ben Anson
Edward Milsom
Laurence Aitchison
BDL
31
5
0
23 May 2023
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
31
5
0
19 Feb 2023
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
32
10
0
30 Aug 2021
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1