Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.06917
Cited By
A Field Guide to Federated Optimization
14 July 2021
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
Blaise Agüera y Arcas
Maruan Al-Shedivat
Galen Andrew
Salman Avestimehr
Katharine Daly
Deepesh Data
Suhas Diggavi
Hubert Eichner
Advait Gadhikar
Zachary Garrett
Antonious M. Girgis
Filip Hanzely
Andrew Straiton Hard
Chaoyang He
Samuel Horváth
Zhouyuan Huo
A. Ingerman
Martin Jaggi
T. Javidi
Peter Kairouz
Satyen Kale
Sai Praneeth Karimireddy
Jakub Konecný
Sanmi Koyejo
Tian Li
Luyang Liu
M. Mohri
H. Qi
Sashank J. Reddi
Peter Richtárik
K. Singhal
Virginia Smith
Mahdi Soltanolkotabi
Weikang Song
A. Suresh
Sebastian U. Stich
Ameet Talwalkar
Hongyi Wang
Blake E. Woodworth
Shanshan Wu
Felix X. Yu
Honglin Yuan
Manzil Zaheer
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Field Guide to Federated Optimization"
14 / 114 papers shown
Title
From Distributed Machine Learning to Federated Learning: A Survey
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
49
243
0
29 Apr 2021
FedCor: Correlation-Based Active Client Selection Strategy for Heterogeneous Federated Learning
Minxue Tang
Xuefei Ning
Yitu Wang
Jingwei Sun
Yu Wang
H. Li
Yiran Chen
FedML
21
80
0
24 Mar 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
154
0
26 Feb 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
181
267
0
26 Feb 2021
Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications
Matthias Paulik
M. Seigel
Henry Mason
Dominic Telaar
Joris Kluivers
...
Dominic Hughes
O. Javidbakht
Fei Dong
Rehan Rishi
Stanley Hung
FedML
177
126
0
16 Feb 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
256
488
0
31 Dec 2020
Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity
Amirhossein Reisizadeh
Isidoros Tziotis
Hamed Hassani
Aryan Mokhtari
Ramtin Pedarsani
FedML
169
99
0
28 Dec 2020
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
163
77
0
23 Oct 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
542
0
30 Mar 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
30
629
0
31 Dec 2019
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
179
1,032
0
29 Nov 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,681
0
09 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
171
683
0
07 Dec 2010
Previous
1
2
3