ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06626
  4. Cited By
Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for
  Practical Measures

Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for Practical Measures

14 July 2021
Y. Bartal
Ora Nova Fandina
Kasper Green Larsen
ArXivPDFHTML

Papers citing "Optimality of the Johnson-Lindenstrauss Dimensionality Reduction for Practical Measures"

2 / 2 papers shown
Title
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
190
307
0
08 Dec 2020
TriMap: Large-scale Dimensionality Reduction Using Triplets
TriMap: Large-scale Dimensionality Reduction Using Triplets
Ehsan Amid
Manfred K. Warmuth
24
118
0
01 Oct 2019
1