ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.04212
  4. Cited By
Measuring and Improving Model-Moderator Collaboration using Uncertainty
  Estimation

Measuring and Improving Model-Moderator Collaboration using Uncertainty Estimation

9 July 2021
Ian D Kivlichan
Zi Lin
J. Liu
Lucy Vasserman
ArXivPDFHTML

Papers citing "Measuring and Improving Model-Moderator Collaboration using Uncertainty Estimation"

15 / 15 papers shown
Title
Overcoming Common Flaws in the Evaluation of Selective Classification
  Systems
Overcoming Common Flaws in the Evaluation of Selective Classification Systems
Jeremias Traub
Till J. Bungert
Carsten T. Lüth
Michael Baumgartner
Klaus H. Maier-Hein
Lena Maier-Hein
Paul F. Jaeger
38
3
0
01 Jul 2024
A Rate-Distortion View of Uncertainty Quantification
A Rate-Distortion View of Uncertainty Quantification
Ifigeneia Apostolopoulou
Benjamin Eysenbach
Frank Nielsen
Artur Dubrawski
UQCV
46
2
0
16 Jun 2024
Inadequacy of common stochastic neural networks for reliable clinical
  decision support
Inadequacy of common stochastic neural networks for reliable clinical decision support
Adrian Lindenmeyer
Malte Blattmann
S. Franke
Thomas Neumuth
Daniel Schneider
BDL
35
1
0
24 Jan 2024
Self-Evaluation Improves Selective Generation in Large Language Models
Self-Evaluation Improves Selective Generation in Large Language Models
Jie Jessie Ren
Yao-Min Zhao
Tu Vu
Peter J. Liu
Balaji Lakshminarayanan
ELM
23
34
0
14 Dec 2023
ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in
  Real-World User-AI Conversation
ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation
Zi Lin
Zihan Wang
Yongqi Tong
Yangkun Wang
Yuxin Guo
Yujia Wang
Jingbo Shang
AI4MH
10
91
0
26 Oct 2023
Morse Neural Networks for Uncertainty Quantification
Morse Neural Networks for Uncertainty Quantification
Benoit Dherin
Huiyi Hu
Jie Jessie Ren
Michael W. Dusenberry
Balaji Lakshminarayanan
UQCV
AI4CE
21
4
0
02 Jul 2023
Towards Anytime Classification in Early-Exit Architectures by Enforcing
  Conditional Monotonicity
Towards Anytime Classification in Early-Exit Architectures by Enforcing Conditional Monotonicity
Metod Jazbec
J. Allingham
Dan Zhang
Eric T. Nalisnick
21
11
0
05 Jun 2023
Bayesian Quadrature for Neural Ensemble Search
Bayesian Quadrature for Neural Ensemble Search
Saad Hamid
Xingchen Wan
Martin Jørgensen
Binxin Ru
Michael A. Osborne
BDL
UQCV
33
1
0
15 Mar 2023
ChatGPT: Jack of all trades, master of none
ChatGPT: Jack of all trades, master of none
Jan Kocoñ
Igor Cichecki
Oliwier Kaszyca
Mateusz Kochanek
Dominika Szydło
...
Maciej Piasecki
Lukasz Radliñski
Konrad Wojtasik
Stanislaw Wo'zniak
Przemyslaw Kazienko
AI4MH
37
527
0
21 Feb 2023
Scaling Vision Transformers to 22 Billion Parameters
Scaling Vision Transformers to 22 Billion Parameters
Mostafa Dehghani
Josip Djolonga
Basil Mustafa
Piotr Padlewski
Jonathan Heek
...
Mario Luvcić
Xiaohua Zhai
Daniel Keysers
Jeremiah Harmsen
N. Houlsby
MLLM
61
570
0
10 Feb 2023
Plex: Towards Reliability using Pretrained Large Model Extensions
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
39
124
0
15 Jul 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
21
48
0
01 May 2022
Improving model calibration with accuracy versus uncertainty
  optimization
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
188
157
0
14 Dec 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1