ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.03887
  4. Cited By
Joint Motion Correction and Super Resolution for Cardiac Segmentation
  via Latent Optimisation

Joint Motion Correction and Super Resolution for Cardiac Segmentation via Latent Optimisation

8 July 2021
Shuo Wang
C. Qin
N. Savioli
Chen Chen
D. O’Regan
S. Cook
Yike Guo
Daniel Rueckert
Wenjia Bai
    MedIm
ArXivPDFHTML

Papers citing "Joint Motion Correction and Super Resolution for Cardiac Segmentation via Latent Optimisation"

12 / 12 papers shown
Title
Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Yundi Zhang
Paul Hager
Che Liu
Suprosanna Shit
Chong Chen
Daniel Rueckert
Jiazhen Pan
93
1
0
17 Apr 2025
Post-DAE: Anatomically Plausible Segmentation via Post-Processing with
  Denoising Autoencoders
Post-DAE: Anatomically Plausible Segmentation via Post-Processing with Denoising Autoencoders
Agostina J. Larrazabal
Cesar E. Martínez
Ben Glocker
Enzo Ferrante
96
66
0
24 Jun 2020
Deep Generative Model-based Quality Control for Cardiac MRI Segmentation
Deep Generative Model-based Quality Control for Cardiac MRI Segmentation
Shuo Wang
G. Tarroni
C. Qin
Yuanhan Mo
Chengliang Dai
Chen Chen
Ben Glocker
Yike Guo
Daniel Rueckert
Wenjia Bai
MedIm
50
28
0
23 Jun 2020
Cardiac Segmentation with Strong Anatomical Guarantees
Cardiac Segmentation with Strong Anatomical Guarantees
Nathan Painchaud
Youssef Skandarani
Thierry Judge
Olivier Bernard
A. Lalande
Pierre-Marc Jodoin
56
101
0
15 Jun 2020
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
  Generative Models
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Sachit Menon
Alexandru Damian
Shijia Hu
Nikhil Ravi
Cynthia Rudin
OOD
DiffM
240
551
0
08 Mar 2020
Deep Learning for Image Super-resolution: A Survey
Deep Learning for Image Super-resolution: A Survey
Zhihao Wang
Jian Chen
Guosheng Lin
SupR
71
1,439
0
16 Feb 2019
To learn image super-resolution, use a GAN to learn how to do image
  degradation first
To learn image super-resolution, use a GAN to learn how to do image degradation first
Adrian Bulat
J. Yang
Georgios Tzimiropoulos
SupR
56
352
0
30 Jul 2018
MR image reconstruction using deep density priors
MR image reconstruction using deep density priors
K. Tezcan
Christian F. Baumgartner
R. Luechinger
K. Pruessmann
E. Konukoglu
55
137
0
30 Nov 2017
Anatomically Constrained Neural Networks (ACNN): Application to Cardiac
  Image Enhancement and Segmentation
Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation
Ozan Oktay
Enzo Ferrante
Konstantinos Kamnitsas
M. Heinrich
Wenjia Bai
...
T. Dawes
D. O’Regan
Bernhard Kainz
Ben Glocker
Daniel Rueckert
54
657
0
22 May 2017
Image reconstruction by domain transform manifold learning
Image reconstruction by domain transform manifold learning
Bo Zhu
Jeremiah Zhe Liu
Bruce Rosen
Matthew S. Rosen
91
1,533
0
28 Apr 2017
A Combined Deep-Learning and Deformable-Model Approach to Fully
  Automatic Segmentation of the Left Ventricle in Cardiac MRI
A Combined Deep-Learning and Deformable-Model Approach to Fully Automatic Segmentation of the Left Ventricle in Cardiac MRI
M. Avendi
A. Kheradvar
Hamid Jafarkhani
58
565
0
25 Dec 2015
Image Super-Resolution Using Deep Convolutional Networks
Image Super-Resolution Using Deep Convolutional Networks
Chao Dong
Chen Change Loy
Kaiming He
Xiaoou Tang
SupR
148
8,077
0
31 Dec 2014
1