Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.03673
Cited By
MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDEs
8 July 2021
Lulu Zhang
Tao Luo
Yaoyu Zhang
Weinan E
Z. Xu
Zheng Ma
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDEs"
21 / 21 papers shown
Title
Orthogonal greedy algorithm for linear operator learning with shallow neural network
Ye Lin
Jiwei Jia
Young Ju Lee
Ran Zhang
42
1
0
06 Jan 2025
STAResNet: a Network in Spacetime Algebra to solve Maxwell's PDEs
Alberto Pepe
Sven Buchholz
Joan Lasenby
33
0
0
24 Aug 2024
A Hybrid Kernel-Free Boundary Integral Method with Operator Learning for Solving Parametric Partial Differential Equations In Complex Domains
Shuo Ling
Liwei Tan
Wenjun Ying
23
0
0
23 Apr 2024
FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model
Zezheng Song
Jiaxin Yuan
Haizhao Yang
AI4CE
40
17
0
23 Apr 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
29
2
0
04 Mar 2024
Generating synthetic data for neural operators
Erisa Hasani
Rachel A. Ward
AI4CE
47
8
0
04 Jan 2024
Energy stable neural network for gradient flow equations
Gang-Han Fan
Tianyu Jin
Yuan Lan
Yang Xiang
Luchan Zhang
36
0
0
17 Sep 2023
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
11
0
08 Aug 2023
Learning Green's Function Efficiently Using Low-Rank Approximations
Kishan Wimalawarne
Taiji Suzuki
S. Langer
19
1
0
01 Aug 2023
Capturing the Diffusive Behavior of the Multiscale Linear Transport Equations by Asymptotic-Preserving Convolutional DeepONets
Keke Wu
Xiongbin Yan
Shi Jin
Zheng Ma
28
6
0
28 Jun 2023
Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion
Xiongbin Yan
Zhi-Qin John Xu
Zheng Ma
32
2
0
03 Apr 2023
A model-data asymptotic-preserving neural network method based on micro-macro decomposition for gray radiative transfer equations
Haiyang Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
11
11
0
11 Dec 2022
Bayesian Inversion with Neural Operator (BINO) for Modeling Subdiffusion: Forward and Inverse Problems
Xiongbin Yan
Z. Xu
Zheng Ma
14
2
0
22 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
35
89
0
15 Nov 2022
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
29
6
0
28 May 2022
BI-GreenNet: Learning Green's functions by boundary integral network
Guochang Lin
Fu-jun Chen
Pipi Hu
Xiang Chen
Junqing Chen
Jun Wang
Zuoqiang Shi
34
20
0
28 Apr 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
33
66
0
19 Jan 2022
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
62
384
0
06 Nov 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
131
438
0
18 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
226
2,287
0
18 Oct 2020
Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains
Ziqi Liu
Wei Cai
Zhi-Qin John Xu
AI4CE
223
122
0
22 Jul 2020
1