Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.03356
Cited By
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
7 July 2021
Elias Frantar
Eldar Kurtic
Dan Alistarh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"M-FAC: Efficient Matrix-Free Approximations of Second-Order Information"
11 / 11 papers shown
Title
Self-calibration for Language Model Quantization and Pruning
Miles Williams
G. Chrysostomou
Nikolaos Aletras
MQ
355
0
0
22 Oct 2024
4-bit Shampoo for Memory-Efficient Network Training
Sike Wang
Jia Li
Pan Zhou
Hua Huang
MQ
78
8
0
28 May 2024
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Mike Heddes
Narayan Srinivasa
T. Givargis
Alexandru Nicolau
156
0
0
12 Jan 2024
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
Z. Yao
A. Gholami
Sheng Shen
Mustafa Mustafa
Kurt Keutzer
Michael W. Mahoney
ODL
71
280
0
01 Jun 2020
Soft Threshold Weight Reparameterization for Learnable Sparsity
Aditya Kusupati
Vivek Ramanujan
Raghav Somani
Mitchell Wortsman
Prateek Jain
Sham Kakade
Ali Farhadi
90
243
0
08 Feb 2020
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
58
212
0
29 May 2019
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
Chaoqi Wang
Roger C. Grosse
Sanja Fidler
Guodong Zhang
45
121
0
15 May 2019
Know What You Don't Know: Unanswerable Questions for SQuAD
Pranav Rajpurkar
Robin Jia
Percy Liang
RALM
ELM
179
2,818
0
11 Jun 2018
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
123
1,262
0
05 Oct 2017
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
324
18,300
0
27 May 2016
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
149
1,500
0
08 Jun 2015
1