ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.03015
  4. Cited By
Evaluating the progress of Deep Reinforcement Learning in the real
  world: aligning domain-agnostic and domain-specific research

Evaluating the progress of Deep Reinforcement Learning in the real world: aligning domain-agnostic and domain-specific research

7 July 2021
J. Luis
E. Crawley
B. Cameron
    OffRL
ArXiv (abs)PDFHTML

Papers citing "Evaluating the progress of Deep Reinforcement Learning in the real world: aligning domain-agnostic and domain-specific research"

13 / 113 papers shown
Title
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement
  Learning
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning
Abhishek Gupta
Coline Devin
YuXuan Liu
Pieter Abbeel
Sergey Levine
94
269
0
08 Mar 2017
FeUdal Networks for Hierarchical Reinforcement Learning
FeUdal Networks for Hierarchical Reinforcement Learning
A. Vezhnevets
Simon Osindero
Tom Schaul
N. Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
FedML
98
907
0
03 Mar 2017
Virtual-to-real Deep Reinforcement Learning: Continuous Control of
  Mobile Robots for Mapless Navigation
Virtual-to-real Deep Reinforcement Learning: Continuous Control of Mobile Robots for Mapless Navigation
L. Tai
Giuseppe Paolo
Ming-Yuan Liu
90
712
0
01 Mar 2017
Stabilising Experience Replay for Deep Multi-Agent Reinforcement
  Learning
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
Nantas Nardelli
Gregory Farquhar
Triantafyllos Afouras
Philip Torr
Pushmeet Kohli
Shimon Whiteson
OffRL
189
599
0
28 Feb 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRLVLM
251
1,544
0
25 Jan 2017
Optimal and Adaptive Off-policy Evaluation in Contextual Bandits
Optimal and Adaptive Off-policy Evaluation in Contextual Bandits
Yu Wang
Alekh Agarwal
Miroslav Dudík
OffRL
135
222
0
04 Dec 2016
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
374
7,572
0
02 Dec 2016
Deep Reinforcement Learning in Large Discrete Action Spaces
Deep Reinforcement Learning in Large Discrete Action Spaces
Gabriel Dulac-Arnold
Richard Evans
H. V. Hasselt
P. Sunehag
Timothy Lillicrap
Jonathan J. Hunt
Timothy A. Mann
T. Weber
T. Degris
Ben Coppin
OffRL
91
575
0
24 Dec 2015
Multiagent Cooperation and Competition with Deep Reinforcement Learning
Multiagent Cooperation and Competition with Deep Reinforcement Learning
Ardi Tampuu
Tambet Matiisen
Dorian Kodelja
Ilya Kuzovkin
Kristjan Korjus
Juhan Aru
Jaan Aru
Raul Vicente
104
868
0
27 Nov 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
330
13,289
0
09 Sep 2015
Reward Shaping with Recurrent Neural Networks for Speeding up On-Line
  Policy Learning in Spoken Dialogue Systems
Reward Shaping with Recurrent Neural Networks for Speeding up On-Line Policy Learning in Spoken Dialogue Systems
Pei-hao Su
David Vandyke
Milica Gasic
N. Mrksic
Tsung-Hsien Wen
S. Young
OffRL
56
52
0
14 Aug 2015
Deep Recurrent Q-Learning for Partially Observable MDPs
Deep Recurrent Q-Learning for Partially Observable MDPs
Matthew J. Hausknecht
Peter Stone
114
1,685
0
23 Jul 2015
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
120
3,021
0
19 Jul 2012
Previous
123