Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.02392
Cited By
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks
6 July 2021
Kaixiong Zhou
Xiao Shi Huang
Daochen Zha
Rui Chen
Li Li
Soo-Hyun Choi
Xia Hu
GNN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dirichlet Energy Constrained Learning for Deep Graph Neural Networks"
50 / 71 papers shown
Title
Network-wide Freeway Traffic Estimation Using Sparse Sensor Data: A Dirichlet Graph Auto-Encoder Approach
Qishen Zhou
Yifan Zhang
Michail A. Makridis
Anastasios Kouvelas
Yibing Wang
Simon Hu
52
0
0
20 Mar 2025
Enhanced Soups for Graph Neural Networks
Joseph Zuber
Aishwarya Sarkar
Joseph Jennings
Ali Jannesari
47
0
0
14 Mar 2025
Effects of Random Edge-Dropping on Over-Squashing in Graph Neural Networks
Jasraj Singh
Keyue Jiang
Brooks Paige
Laura Toni
70
1
0
11 Feb 2025
What makes a good feedforward computational graph?
Alex Vitvitskyi
J. G. Araújo
Marc Lackenby
Petar Velickovic
85
1
0
10 Feb 2025
Resolving Oversmoothing with Opinion Dissensus
Keqin Wang
Yulong Yang
Ishan Saha
Christine Allen-Blanchette
60
1
0
31 Jan 2025
A General Recipe for Contractive Graph Neural Networks -- Technical Report
Maya Bechler-Speicher
Moshe Eliasof
36
0
0
04 Nov 2024
Reducing Oversmoothing through Informed Weight Initialization in Graph Neural Networks
Dimitrios Kelesis
Dimitris Fotakis
G. Paliouras
39
0
0
31 Oct 2024
Learning to Control the Smoothness of Graph Convolutional Network Features
Shih-Hsin Wang
Justin Baker
Cory Hauck
Bao Wang
38
0
0
18 Oct 2024
Partially Trained Graph Convolutional Networks Resist Oversmoothing
Dimitrios Kelesis
Dimitris Fotakis
G. Paliouras
SSL
18
0
0
17 Oct 2024
Preventing Representational Rank Collapse in MPNNs by Splitting the Computational Graph
Andreas Roth
Franka Bause
Nils M. Kriege
Thomas Liebig
35
3
0
17 Sep 2024
COSCO: A Sharpness-Aware Training Framework for Few-shot Multivariate Time Series Classification
Jesus Barreda
Ashley Gomez
Ruben Puga
Kaixiong Zhou
Li Zhang
AI4TS
18
0
0
15 Sep 2024
Beyond Over-smoothing: Uncovering the Trainability Challenges in Deep Graph Neural Networks
Jie Peng
Runlin Lei
Zhewei Wei
33
5
0
07 Aug 2024
Dirac--Bianconi Graph Neural Networks -- Enabling Non-Diffusive Long-Range Graph Predictions
Christian Nauck
R. Gorantla
M. Lindner
Konstantin Schurholt
Antonia S. J. S. Mey
Frank Hellmann
AI4CE
50
2
0
17 Jul 2024
Simplifying the Theory on Over-Smoothing
Andreas Roth
48
3
0
16 Jul 2024
Foundations and Frontiers of Graph Learning Theory
Yu Huang
Min Zhou
Menglin Yang
Zhen Wang
Muhan Zhang
Jie Wang
Hong Xie
Hao Wang
Defu Lian
Enhong Chen
AI4CE
GNN
55
2
0
03 Jul 2024
SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network
Yushan Zhu
Wen Zhang
Yajing Xu
Zhen Yao
Mingyang Chen
Huajun Chen
35
0
0
03 Jul 2024
Bridging Smoothness and Approximation: Theoretical Insights into Over-Smoothing in Graph Neural Networks
Guangrui Yang
Jianfei Li
Ming Li
Han Feng
Ding-Xuan Zhou
35
1
0
01 Jul 2024
Efficient Sharpness-Aware Minimization for Molecular Graph Transformer Models
Yili Wang
Kaixiong Zhou
Ninghao Liu
Ying Wang
Xin Wang
40
10
0
19 Jun 2024
Global-Local Graph Neural Networks for Node-Classification
Moshe Eliasof
Eran Treister
41
3
0
16 Jun 2024
Continuous Geometry-Aware Graph Diffusion via Hyperbolic Neural PDE
Jiaxu Liu
Xinping Yi
Sihao Wu
Xiangyu Yin
Tianle Zhang
Xiaowei Huang
Shi Jin
40
0
0
03 Jun 2024
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
Langzhang Liang
Sunwoo Kim
Kijung Shin
Zenglin Xu
Shirui Pan
Yuan Qi
37
3
0
31 May 2024
FlexiDrop: Theoretical Insights and Practical Advances in Random Dropout Method on GNNs
Zhiheng Zhou
Sihao Liu
Weichen Zhao
24
0
0
30 May 2024
SmoothGNN: Smoothing-based GNN for Unsupervised Node Anomaly Detection
Xiangyu Dong
Xing Zhang
Yanni Sun
Lei Chen
Mingxuan Yuan
Sibo Wang
32
1
0
27 May 2024
Rethinking Independent Cross-Entropy Loss For Graph-Structured Data
Rui Miao
Kaixiong Zhou
Yili Wang
Ninghao Liu
Ying Wang
Xin Wang
42
4
0
24 May 2024
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing
Keke Huang
Yu Guang Wang
Ming Li
Pietro Lió
46
21
0
21 May 2024
ATNPA: A Unified View of Oversmoothing Alleviation in Graph Neural Networks
Yufei Jin
Xingquan Zhu
53
2
0
02 May 2024
Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models
Xu Shen
Yili Wang
Kaixiong Zhou
Shirui Pan
Xin Wang
32
6
0
24 Apr 2024
Spectral Graph Pruning Against Over-Squashing and Over-Smoothing
Adarsh Jamadandi
Celia Rubio-Madrigal
R. Burkholz
42
1
0
06 Apr 2024
GTC: GNN-Transformer Co-contrastive Learning for Self-supervised Heterogeneous Graph Representation
Yundong Sun
Dongjie Zhu
Yansong Wang
Zhaoshuo Tian
ViT
SSL
38
13
0
22 Mar 2024
BloomGML: Graph Machine Learning through the Lens of Bilevel Optimization
Amber Yijia Zheng
Tong He
Yixuan Qiu
Minjie Wang
David Wipf
36
2
0
07 Mar 2024
Entropy Aware Message Passing in Graph Neural Networks
Philipp Nazari
Oliver Lemke
Davide Guidobene
Artiom Gesp
33
0
0
07 Mar 2024
Simplified PCNet with Robustness
Bingheng Li
Xuanting Xie
Haoxiang Lei
Ruiyi Fang
Zhao Kang
37
5
0
06 Mar 2024
Investigating Out-of-Distribution Generalization of GNNs: An Architecture Perspective
Kai Guo
Hongzhi Wen
Wei Jin
Yaming Guo
Jiliang Tang
Yi Chang
OOD
AI4CE
19
3
0
13 Feb 2024
Masked Graph Autoencoder with Non-discrete Bandwidths
Zi-qiang Zhao
Yuhua Li
Yixiong Zou
Jiliang Tang
Ruixuan Li
27
10
0
06 Feb 2024
PC-Conv: Unifying Homophily and Heterophily with Two-fold Filtering
Bingheng Li
Erlin Pan
Zhao Kang
24
31
0
22 Dec 2023
An Effective Universal Polynomial Basis for Spectral Graph Neural Networks
Keke Huang
Pietro Lió
16
1
0
30 Nov 2023
Dirichlet Energy Enhancement of Graph Neural Networks by Framelet Augmentation
Jialin Chen
Yuelin Wang
Cristian Bodnar
Rex Ying
Pietro Lió
Yu Guang Wang
29
10
0
09 Nov 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
42
4
0
30 Oct 2023
DeepHGCN: Toward Deeper Hyperbolic Graph Convolutional Networks
Jiaxu Liu
Xinping Yi
Xiaowei Huang
38
2
0
03 Oct 2023
Rank Collapse Causes Over-Smoothing and Over-Correlation in Graph Neural Networks
Andreas Roth
Thomas Liebig
43
12
0
31 Aug 2023
Anomaly Detection in Networks via Score-Based Generative Models
Dmitrii Gavrilev
Evgeny Burnaev
22
3
0
27 Jun 2023
Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication
A. Jaiswal
Shiwei Liu
Tianlong Chen
Ying Ding
Zhangyang Wang
GNN
42
5
0
18 Jun 2023
Towards Label Position Bias in Graph Neural Networks
Haoyu Han
Xiaorui Liu
Feng Shi
MohamadAli Torkamani
Charu C. Aggarwal
Jiliang Tang
34
4
0
25 May 2023
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
26
185
0
20 Mar 2023
Data-centric Artificial Intelligence: A Survey
Daochen Zha
Zaid Pervaiz Bhat
Kwei-Herng Lai
Fan Yang
Zhimeng Jiang
Shaochen Zhong
Xia Hu
18
192
0
17 Mar 2023
Steering Graph Neural Networks with Pinning Control
Acong Zhang
P. Li
Guanrong Chen
LLMSV
29
0
0
02 Mar 2023
Towards Training GNNs using Explanation Directed Message Passing
V. Giunchiglia
Chirag Varun Shukla
Guadalupe Gonzalez
Chirag Agarwal
30
7
0
30 Nov 2022
Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification
Moshe Eliasof
E. Haber
Eran Treister
GNN
25
0
0
29 Nov 2022
QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional Networks
Kaixiong Zhou
Zhenyu (Allen) Zhang
Sheng-Wei Chen
Tianlong Chen
Xiao Huang
Zhangyang Wang
Xia Hu
GNN
30
2
0
09 Nov 2022
Improving Graph Neural Networks with Learnable Propagation Operators
Moshe Eliasof
Lars Ruthotto
Eran Treister
34
20
0
31 Oct 2022
1
2
Next