ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.01908
11
20

Reward-Adaptive Reinforcement Learning: Dynamic Policy Gradient Optimization for Bipedal Locomotion

5 July 2021
Changxin Huang
Guangrun Wang
Zhibo Zhou
Ronghui Zhang
Liang Lin
ArXivPDFHTML
Abstract

Controlling a non-statically bipedal robot is challenging due to the complex dynamics and multi-criterion optimization involved. Recent works have demonstrated the effectiveness of deep reinforcement learning (DRL) for simulation and physical robots. In these methods, the rewards from different criteria are normally summed to learn a single value function. However, this may cause the loss of dependency information between hybrid rewards and lead to a sub-optimal policy. In this work, we propose a novel reward-adaptive reinforcement learning for biped locomotion, allowing the control policy to be simultaneously optimized by multiple criteria using a dynamic mechanism. The proposed method applies a multi-head critic to learn a separate value function for each reward component. This leads to hybrid policy gradient. We further propose dynamic weight, allowing each component to optimize the policy with different priorities. This hybrid and dynamic policy gradient (HDPG) design makes the agent learn more efficiently. We show that the proposed method outperforms summed-up-reward approaches and is able to transfer to physical robots. The sim-to-real and MuJoCo results further demonstrate the effectiveness and generalization of HDPG.

View on arXiv
Comments on this paper