Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.01895
Cited By
Optimizing the Numbers of Queries and Replies in Federated Learning with Differential Privacy
5 July 2021
Yipeng Zhou
Xuezheng Liu
Yao Fu
Di Wu
Chao Li
Shui Yu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimizing the Numbers of Queries and Replies in Federated Learning with Differential Privacy"
33 / 33 papers shown
Title
Cost-Effective Federated Learning Design
Bing Luo
Xiang Li
Shiqiang Wang
Jianwei Huang
Leandros Tassiulas
FedML
38
180
0
15 Dec 2020
LDP-Fed: Federated Learning with Local Differential Privacy
Stacey Truex
Ling Liu
Ka-Ho Chow
Mehmet Emre Gursoy
Wenqi Wei
FedML
53
392
0
05 Jun 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
46
147
0
22 Apr 2020
FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection
Ruixuan Liu
Yang Cao
Masatoshi Yoshikawa
Hong Chen
FedML
34
108
0
24 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
259
437
0
04 Mar 2020
Wireless Federated Learning with Local Differential Privacy
Mohamed Seif
Ravi Tandon
Ming Li
98
171
0
12 Feb 2020
Convergence Time Optimization for Federated Learning over Wireless Networks
Mingzhe Chen
H. Vincent Poor
Walid Saad
Shuguang Cui
51
297
0
22 Jan 2020
iDLG: Improved Deep Leakage from Gradients
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
57
635
0
08 Jan 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
161
6,226
0
10 Dec 2019
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
45
176
0
22 Nov 2019
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
99
1,607
0
01 Nov 2019
Accelerating Federated Learning via Momentum Gradient Descent
Wei Liu
Li Chen
Yunfei Chen
Wenyi Zhang
FedML
AI4CE
60
292
0
08 Oct 2019
Differential Privacy-enabled Federated Learning for Sensitive Health Data
Olivia Choudhury
A. Gkoulalas-Divanis
Theodoros Salonidis
I. Sylla
Yoonyoung Park
Grace Hsu
Amar K. Das
FedML
OOD
47
176
0
07 Oct 2019
Differentially Private Meta-Learning
Jeffrey Li
M. Khodak
S. Caldas
Ameet Talwalkar
FedML
110
107
0
12 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
96
4,496
0
21 Aug 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
127
2,326
0
04 Jul 2019
The Value of Collaboration in Convex Machine Learning with Differential Privacy
Nan Wu
Farhad Farokhi
David B. Smith
M. Kâafar
FedML
54
98
0
24 Jun 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
76
2,199
0
21 Jun 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
101
2,660
0
04 Feb 2019
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
120
1,417
0
03 Dec 2018
Protection Against Reconstruction and Its Applications in Private Federated Learning
Abhishek Bhowmick
John C. Duchi
Julien Freudiger
Gaurav Kapoor
Ryan M. Rogers
FedML
58
360
0
03 Dec 2018
Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning
Peng Kuang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
FedML
62
785
0
03 Dec 2018
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
LRM
44
31
0
10 Oct 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
45
39
0
11 Jul 2018
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
220
1,700
0
14 Apr 2018
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
D. Song
118
1,137
0
22 Feb 2018
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption
Lam M. Nguyen
Phuong Ha Nguyen
Marten van Dijk
Peter Richtárik
K. Scheinberg
Martin Takáč
66
227
0
11 Feb 2018
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Simon Lacoste-Julien
49
70
0
11 Jan 2018
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
90
1,293
0
20 Dec 2017
Collecting Telemetry Data Privately
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
46
682
0
05 Dec 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
109
1,399
0
24 Feb 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
175
6,101
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
276
17,399
0
17 Feb 2016
1