ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.00656
  4. Cited By
Shared Data and Algorithms for Deep Learning in Fundamental Physics

Shared Data and Algorithms for Deep Learning in Fundamental Physics

1 July 2021
L. Benato
E. Buhmann
M. Erdmann
P. Fackeldey
J. Glombitza
Nikolai Hartmann
Gregor Kasieczka
W. Korcari
T. Kuhr
J. Steinheimer
H. Stocker
Tilman Plehn
K. Zhou
    PINN
    OOD
ArXivPDFHTML

Papers citing "Shared Data and Algorithms for Deep Learning in Fundamental Physics"

5 / 5 papers shown
Title
Comparison of Machine Learning Approaches for Classifying Spinodal
  Events
Comparison of Machine Learning Approaches for Classifying Spinodal Events
Ashwini Malviya
Sparsh Mittal
33
0
0
13 Oct 2024
OmniJet-$α$: The first cross-task foundation model for particle
  physics
OmniJet-ααα: The first cross-task foundation model for particle physics
Joschka Birk
Anna Hallin
Gregor Kasieczka
AI4CE
45
22
0
08 Mar 2024
VTruST: Controllable value function based subset selection for
  Data-Centric Trustworthy AI
VTruST: Controllable value function based subset selection for Data-Centric Trustworthy AI
Soumili Das
Shubhadip Nag
Shreyyash Sharma
Suparna Bhattacharya
Sourangshu Bhattacharya
32
0
0
08 Mar 2024
Learning Tree Structures from Leaves For Particle Decay Reconstruction
Learning Tree Structures from Leaves For Particle Decay Reconstruction
James Kahn
I. Tsaklidis
Oskar Taubert
Lea Reuter
G. Dujany
...
A. Thaller
P. Goldenzweig
F. Bernlochner
Achim Streit
Markus Gotz
19
11
0
31 Aug 2022
MLPF: Efficient machine-learned particle-flow reconstruction using graph
  neural networks
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
J. Pata
Javier Mauricio Duarte
J. Vlimant
M. Pierini
M. Spiropulu
115
76
0
21 Jan 2021
1