Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.00501
Cited By
Secure Quantized Training for Deep Learning
1 July 2021
Marcel Keller
Ke Sun
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Secure Quantized Training for Deep Learning"
20 / 20 papers shown
Title
VIRGOS: Secure Graph Convolutional Network on Vertically Split Data from Sparse Matrix Decomposition
Yu Zheng
Qizhi Zhang
Lichun Li
Kai Zhou
Shan Yin
GNN
60
0
0
17 Feb 2025
HawkEye: Statically and Accurately Profiling the Communication Cost of Models in Multi-party Learning
Wenqiang Ruan
Xin Lin
Ruisheng Zhou
Guopeng Lin
Shui Yu
Weili Han
45
0
0
16 Feb 2025
Privacy-Preserving Power Flow Analysis via Secure Multi-Party Computation
Jonas von der Heyden
Nils Schlüter
P. Binfet
Martin Asman
Markus Zdrallek
Tibor Jager
M. S. Darup
61
1
0
21 Nov 2024
CryptoTrain: Fast Secure Training on Encrypted Dataset
Jiaqi Xue
Yancheng Zhang
YanShan Wang
Xueqiang Wang
Hao Zheng
Qian Lou
24
3
0
25 Sep 2024
UTrace: Poisoning Forensics for Private Collaborative Learning
Evan Rose
Hidde Lycklama
Harsh Chaudhari
Anwar Hithnawi
Alina Oprea
45
1
0
23 Sep 2024
How to Privately Tune Hyperparameters in Federated Learning? Insights from a Benchmark Study
Natalija Mitic
Apostolos Pyrgelis
Sinem Sav
FedML
58
1
0
25 Feb 2024
Holding Secrets Accountable: Auditing Privacy-Preserving Machine Learning
Hidde Lycklama
Alexander Viand
Nicolas Küchler
Christian Knabenhans
Anwar Hithnawi
59
6
0
24 Feb 2024
CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources
Sikha Pentyala
Mayana Pereira
Martine De Cock
29
1
0
13 Feb 2024
Spin: An Efficient Secure Computation Framework with GPU Acceleration
Wuxuan Jiang
Xiangjun Song
Shenbai Hong
Haijun Zhang
Wenxin Liu
Bo Zhao
Wei Xu
Yi Li
23
1
0
04 Feb 2024
Practical, Private Assurance of the Value of Collaboration
Hassan Jameel Asghar
Zhigang Lu
Zhongrui Zhao
Dali Kaafar
FedML
27
0
0
04 Oct 2023
Attesting Distributional Properties of Training Data for Machine Learning
Vasisht Duddu
Anudeep Das
Nora Khayata
Hossein Yalame
T. Schneider
Nirmal Asokan
48
5
0
18 Aug 2023
Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects
Conrad Sanderson
David M. Douglas
Qinghua Lu
40
11
0
17 Apr 2023
WW-FL: Secure and Private Large-Scale Federated Learning
F. Marx
T. Schneider
Ajith Suresh
Tobias Wehrle
Christian Weinert
Hossein Yalame
FedML
25
2
0
20 Feb 2023
Secure Multiparty Computation for Synthetic Data Generation from Distributed Data
Mayana Pereira
Sikha Pentyala
A. Nascimento
R. T. D. Sousa
Martine De Cock
13
6
0
13 Oct 2022
Privacy-Preserving Federated Recurrent Neural Networks
Sinem Sav
Abdulrahman Diaa
Apostolos Pyrgelis
Jean-Philippe Bossuat
Jean-Pierre Hubaux
12
7
0
28 Jul 2022
Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural Network Inference
Maximilian Lam
Michael Mitzenmacher
Vijay Janapa Reddi
Gu-Yeon Wei
David Brooks
39
3
0
05 Mar 2022
CECILIA: Comprehensive Secure Machine Learning Framework
Ali Burak Ünal
Nícolas Pfeifer
Mete Akgun
25
2
0
07 Feb 2022
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
57
183
0
22 Apr 2021
secureTF: A Secure TensorFlow Framework
D. Quoc
Franz Gregor
Sergei Arnautov
Roland Kunkel
Pramod Bhatotia
Christof Fetzer
44
40
0
20 Jan 2021
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
87
301
0
13 Oct 2020
1