ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.00501
  4. Cited By
Secure Quantized Training for Deep Learning

Secure Quantized Training for Deep Learning

1 July 2021
Marcel Keller
Ke Sun
    MQ
ArXivPDFHTML

Papers citing "Secure Quantized Training for Deep Learning"

20 / 20 papers shown
Title
VIRGOS: Secure Graph Convolutional Network on Vertically Split Data from Sparse Matrix Decomposition
VIRGOS: Secure Graph Convolutional Network on Vertically Split Data from Sparse Matrix Decomposition
Yu Zheng
Qizhi Zhang
Lichun Li
Kai Zhou
Shan Yin
GNN
60
0
0
17 Feb 2025
HawkEye: Statically and Accurately Profiling the Communication Cost of Models in Multi-party Learning
HawkEye: Statically and Accurately Profiling the Communication Cost of Models in Multi-party Learning
Wenqiang Ruan
Xin Lin
Ruisheng Zhou
Guopeng Lin
Shui Yu
Weili Han
45
0
0
16 Feb 2025
Privacy-Preserving Power Flow Analysis via Secure Multi-Party
  Computation
Privacy-Preserving Power Flow Analysis via Secure Multi-Party Computation
Jonas von der Heyden
Nils Schlüter
P. Binfet
Martin Asman
Markus Zdrallek
Tibor Jager
M. S. Darup
61
1
0
21 Nov 2024
CryptoTrain: Fast Secure Training on Encrypted Dataset
CryptoTrain: Fast Secure Training on Encrypted Dataset
Jiaqi Xue
Yancheng Zhang
YanShan Wang
Xueqiang Wang
Hao Zheng
Qian Lou
24
3
0
25 Sep 2024
UTrace: Poisoning Forensics for Private Collaborative Learning
UTrace: Poisoning Forensics for Private Collaborative Learning
Evan Rose
Hidde Lycklama
Harsh Chaudhari
Anwar Hithnawi
Alina Oprea
45
1
0
23 Sep 2024
How to Privately Tune Hyperparameters in Federated Learning? Insights
  from a Benchmark Study
How to Privately Tune Hyperparameters in Federated Learning? Insights from a Benchmark Study
Natalija Mitic
Apostolos Pyrgelis
Sinem Sav
FedML
58
1
0
25 Feb 2024
Holding Secrets Accountable: Auditing Privacy-Preserving Machine
  Learning
Holding Secrets Accountable: Auditing Privacy-Preserving Machine Learning
Hidde Lycklama
Alexander Viand
Nicolas Küchler
Christian Knabenhans
Anwar Hithnawi
59
6
0
24 Feb 2024
CaPS: Collaborative and Private Synthetic Data Generation from
  Distributed Sources
CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources
Sikha Pentyala
Mayana Pereira
Martine De Cock
29
1
0
13 Feb 2024
Spin: An Efficient Secure Computation Framework with GPU Acceleration
Spin: An Efficient Secure Computation Framework with GPU Acceleration
Wuxuan Jiang
Xiangjun Song
Shenbai Hong
Haijun Zhang
Wenxin Liu
Bo Zhao
Wei Xu
Yi Li
23
1
0
04 Feb 2024
Practical, Private Assurance of the Value of Collaboration
Practical, Private Assurance of the Value of Collaboration
Hassan Jameel Asghar
Zhigang Lu
Zhongrui Zhao
Dali Kaafar
FedML
27
0
0
04 Oct 2023
Attesting Distributional Properties of Training Data for Machine
  Learning
Attesting Distributional Properties of Training Data for Machine Learning
Vasisht Duddu
Anudeep Das
Nora Khayata
Hossein Yalame
T. Schneider
Nirmal Asokan
48
5
0
18 Aug 2023
Implementing Responsible AI: Tensions and Trade-Offs Between Ethics
  Aspects
Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects
Conrad Sanderson
David M. Douglas
Qinghua Lu
40
11
0
17 Apr 2023
WW-FL: Secure and Private Large-Scale Federated Learning
WW-FL: Secure and Private Large-Scale Federated Learning
F. Marx
T. Schneider
Ajith Suresh
Tobias Wehrle
Christian Weinert
Hossein Yalame
FedML
25
2
0
20 Feb 2023
Secure Multiparty Computation for Synthetic Data Generation from
  Distributed Data
Secure Multiparty Computation for Synthetic Data Generation from Distributed Data
Mayana Pereira
Sikha Pentyala
A. Nascimento
R. T. D. Sousa
Martine De Cock
13
6
0
13 Oct 2022
Privacy-Preserving Federated Recurrent Neural Networks
Privacy-Preserving Federated Recurrent Neural Networks
Sinem Sav
Abdulrahman Diaa
Apostolos Pyrgelis
Jean-Philippe Bossuat
Jean-Pierre Hubaux
12
7
0
28 Jul 2022
Tabula: Efficiently Computing Nonlinear Activation Functions for Secure
  Neural Network Inference
Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural Network Inference
Maximilian Lam
Michael Mitzenmacher
Vijay Janapa Reddi
Gu-Yeon Wei
David Brooks
39
3
0
05 Mar 2022
CECILIA: Comprehensive Secure Machine Learning Framework
CECILIA: Comprehensive Secure Machine Learning Framework
Ali Burak Ünal
Nícolas Pfeifer
Mete Akgun
25
2
0
07 Feb 2022
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
57
183
0
22 Apr 2021
secureTF: A Secure TensorFlow Framework
secureTF: A Secure TensorFlow Framework
D. Quoc
Franz Gregor
Sergei Arnautov
Roland Kunkel
Pramod Bhatotia
Christof Fetzer
44
40
0
20 Jan 2021
CrypTFlow2: Practical 2-Party Secure Inference
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
87
301
0
13 Oct 2020
1